首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
重金属污染生物修复中,藻类对重金属的吸附潜力引起诸多研究者的关注。为了探讨从地衣体分离培养的地衣共生藻对重金属Cu~(2+)、Zn~(2+)吸附特性及其耐受性的差异,以2种地衣共生藻为研究材料,采用Evan’s blue染色法、BCO和双硫腙分光光度法测定地衣共生藻细胞活率,培养液及藻体内的Cu~(2+)、Zn~(2+)含量。结果显示:不同浓度Cu~(2+)、Zn~(2+)胁迫下,2种地衣共生藻的细胞活力及重金属吸附特性有所差异,对Cu~(2+)胁迫的耐受性及吸附性为:P.EB;Zn~(2+)胁迫下,培养至9d时耐受为:P.E B,随着培养时间的延长P.E的细胞活力急剧下降并低于B,但吸附率还是处于P.E B;并且2种地衣共生藻对Zn~(2+)胁迫的耐性及吸附性明显高于Cu~(2+)。研究发现,来自菌藻共生的特殊生物-地卷属地衣的两种藻类比一些自由生长的藻类对铜和锌胁迫具有较高的耐受性及吸附性。  相似文献   

2.
对分离自地衣石果衣的共生菌藻在干燥和饥饿胁迫下的存活能力进行了分析.对其中的共生菌进行了干燥和饥饿双胁迫以及饥饿单胁迫两种实验处理,对共生藻进行了干燥单胁迫实验处理.实验通过使用扫描电子显微镜、透射电子显微镜、荧光显微镜、分光光度法和流式细胞术对生物量大小、重量和细胞密度、菌丝和藻细胞畸形以及代谢活力进行了检测.结果显示,共生菌在干燥和饥饿双胁迫下能存活7个月;在饥饿单胁迫下能存活8个月.共生藻在干燥胁迫下能存活2个月.本实验为深入研究地衣繁殖生物学和固沙固碳的干旱沙漠生物地毯工程提供了科学依据.  相似文献   

3.
地衣是由共生菌与共生藻互惠共生形成的一类特异化真菌,也叫地衣型真菌。全球已知约 1.3万种。其中,绝大多数是子囊地衣,仅约 1%是由担子菌与共生藻结合形成担子地衣。担子地衣的有性繁殖是通过担子果产生担孢子,担孢子在适合的环境中与共生藻结合,形成担子地衣体。2012 年我们在滇西北野外考察中,发现了目前全球已知担子地衣中最大的子实体 ( 标本号: 王立松等 12 -34740) 。该地衣生长在海拔 3 678 m 的湿冷环境中,腐木生,地衣体群落面积 60 cm × 50 cm; 地衣体呈鳞片状,直径1 ~ 7 mm; 上表面平坦或微凹陷,暗绿色至淡黄绿色,  相似文献   

4.
氮胁迫下共生蓝藻的分离纯化及生理响应机制   总被引:1,自引:0,他引:1  
目的:揭示氮胁迫逆境下共生蓝藻的生理响应机制。方法:采用藻细胞分离纯化技术获得了一株共生蓝藻,测定其光合色素含量并分析了氮胁迫下的生理响应机制。结果:新分离藻株的细胞形态与其他念珠藻属相似,具有典型的营养细胞和异型胞;该藻室温吸收光谱中叶绿素蓝区相对含量减少,类胡萝卜素相对含量增加;氮胁迫时,藻细胞在pH8.4和160μmol·m-2·s-1光强组合下的细胞增长率最高,同时藻细胞叶绿素a含量增加值也最高,对共生藻生理响应机制有着显著性影响(P〈0.05)。结论:该共生蓝藻为念珠藻属蓝藻,在氮胁迫下有较强的叶绿素合成能力,对碱性条件及高光强有着显著的生理响应。  相似文献   

5.
地衣是真菌和一种或多种光合微生物形成的稳定的共生联合体 ,既是先锋生物 ,又是敏感生物。环境的变化及生境的片断化 ,使得许多地衣种类处于濒危状态。保护珍稀濒危地衣物种的方法包括地衣体的移植 ,地衣中菌藻的分离培养及基因组文库的构建等。本研究用改进的CTAB方法提取基因组总DNA ,以Lamb daGEM 11为载体 ,构建了红脐鳞 (Rhizoplacachrysoleuca)的基因组文库 ,文库中同时含有该地衣共生菌与共生藻的DNA。该文库包含 8.5× 10 5个重组子 ,插入片段的平均大小为 19kb。文库的容量约为红脐鳞单倍体基因组的 10 0倍。该基因组文库的构建为保护稀有与濒危地衣物种提供了一个新的途径 ,并可进一步开展有关地衣的分子操作研究 ,如地衣冰核蛋白的异源表达等。  相似文献   

6.
地衣的繁殖是以破裂,或粉芽、珊瑚芽和碎裂片等营养繁殖方式为主,但作为较高一级的生殖方式——有性生殖,对地衣的生活同样具有重要意义。作为地衣的共生藻,大多数形态简单,无特殊分化的繁殖器官,一般仅以二裂形式增加其数目。于是研究地衣的有性生殖,基本上就变成了研究与之共生的真菌的性生有殖。构成地衣的共生菌只有一种属藻状菌纲;约有16种属担子菌纲,如产于热带的毛布衣(Dictyonema sericeum)印是在其原叶体下表面发育成担子,担子上生出4个担子梗,  相似文献   

7.
为了探讨铜离子胁迫对中国树花共生藻细胞毒害作用的机制及细胞死亡的原因,通过徒手切片,采用两种TUNEL检测法(Promega和Roche试剂盒)对2mmol/L和4mmol/L Cu~(2+)胁迫24h的中国树花地衣体共生藻细胞凋亡情况进行观察。结果表明:(1)伊文思蓝染色法检测结果显示,中国树花共生藻细胞活力在2和4mmol/L Cu~(2+)胁迫下显著降低,其细胞的死亡率随着Cu~(2+)浓度的提高和处理时间的延长而明显增加;(2)在2和4mmol/L Cu~(2+)胁迫条件下,中国树花共生藻细胞的TUNEL阳性细胞率在Promega试剂盒中检测结果分别为50.30%和31.21%,而在Roche试剂盒中共生藻细胞TUNEL阳性标记核分别为53.17%和36.88%,两种TUNEL检测法结果类似。(3)与伊文思蓝染色法检测的Cu~(2+)胁迫中国树花共生藻细胞活力相比,发现较低浓度的Cu~(2+)(2mmol/L)胁迫对地衣共生藻细胞的毒害作用可诱导启动细胞凋亡程序,而较高浓度的Cu~(2+)(4mmol/L)胁迫对地衣共生藻产生较严重的毒害则导致大部分细胞的坏死,只有极少数细胞出现细胞凋亡。(4)两种试剂盒均可用于较低浓度Cu~(2+)胁迫引起的地衣体共生藻细胞凋亡的检测;直接将徒手切片材料用于TUNEL细胞凋亡原位检测中也得到了较理想的结果,避免了制备石蜡切片的繁琐步骤,缩短实验时间,简化了实验流程。  相似文献   

8.
《菌物学报》2015,(5):1007-1014
作为沙漠生物地毯工程研究的组成部分,对荒漠地衣石果衣Endocarpon pusillum、节瘤微孢衣Acarospora nodulosa以及荒漠微孢衣A.schleicheri的共生菌藻进行了耐热性研究。结果表明,3种荒漠地衣的共生菌藻在湿润条件下对温度的最大忍受力仅为50℃,而在干燥条件下石果衣的共生菌藻的最大忍受力均为75℃,而其他两种地衣共生菌藻的最大忍受力均为80℃。3种荒漠地衣共生菌、藻分别对高温胁迫的耐受力,在干燥状态下均比在湿润状态下明显增高。  相似文献   

9.
低温胁迫下丛枝菌根真菌对玉米光合特性的影响   总被引:10,自引:2,他引:8  
利用盆栽试验,在15℃和5℃低温胁迫下研究了丛枝菌根(AM)真菌对玉米生长、叶绿素含量、叶绿素荧光和光合作用的影响.结果表明:低温胁迫抑制了AM真菌的侵染;接种AM真菌的玉米地上部和地下部干物质量、相对叶绿素含量高于不接种植株.与非菌根玉米相比,菌根玉米具有较高的最大荧光(Fm)、可变荧光(Fv)、最大光化学效率(Fv/Fm)和潜在光化学效率(Fv/Fo)及较低的初始荧光(Fo),并且在5℃处理中差异显著.接种AM真菌使玉米叶片的净光合速率(Pn)和蒸腾速率(Tr)显著增强;低温胁迫下,菌根植株的气孔导度(Gs)显著高于非菌根植株;而胞间CO2浓度(Ci)显著低于非菌根植株.表明AM真菌可通过提高叶绿素含量及改善叶片叶绿素荧光和光合作用来减轻低温胁迫对玉米植株造成的伤害,提高玉米耐受低温的能力,进而提高玉米的生物量,促进玉米生长.  相似文献   

10.
大团囊虫草是一类寄生型真菌,绝大多数以大团囊菌为宿主,只有3个种寄生在甲虫和蝉的幼虫体内。我们从采集自中国五个省份和南极长城站的42份地衣标本中分离得到了64株大团囊虫草属真菌菌株,系统发育学分析表明,这些真菌可能不是相同的种类,显示有多个种类的大团囊虫草属真菌广泛定植于地衣体中。与高等植物共生的内生真菌通常对宿主的生长起到促进作用,然而,由于地衣内生真菌生长所需营养物质来源于地衣共生真菌或光合共生物,因此地衣内生真菌与共生真菌之间很有可能是寄生关系或竞争关系。本研究发现大团囊虫草广泛伴生在地衣体内,部分证实了这一假说的正确性。  相似文献   

11.
It is proposed that lichen photobionts, compared to mycobionts, have very limited capacity to evolve adaptations to lichenization, so that the symbionts in lichens do not co-evolve. This is because lichens have (a) no sequential selection of photobiont cells from one lichen into another needed for Darwinian natural selection and (b) no photobiont sexual reproduction in the thallus. Molecular studies of lichen photobionts indicate no predictable patterns of photobiont lineages that occur in lichens so supporting this proposal. Any adaptation by photobionts accumulating beneficial mutations for lichenization is probably insignificant compared to the rate of mycobiont adaptation. This proposal poses questions for research relating the photobiont sexual cycle (genetic and cellular), the fate of photobiont lineages after lichenization, whether lineages of photobionts in thalli change with time, thallus formation by from spores as well as carbohydrate movement from photobionts to mycobionts and regulation of co-development of the symbionts in the thallus.  相似文献   

12.
Surface alkanes and fatty acids from the thalli of the lichen Xanthoria parietina, its photobiont Trebouxia sp., and its mycobiont were analysed by GC-MS. The green alga Trebouxia sp. synthesized mainly unsaturated fatty acids such as (Z,Z,Z)-9,12,15-18 : 3 (Z,Z)-9,12-18 : 2 and (Z)-9-18 : 1, and light alkanes C8-C15 (up to 83% of total n-alkanes). However, the mycobiont contained mainly saturated fatty acids such as hexadecanoic (16 : 0) and octadecanoic acid (18 : 0), and also very long-chain n-alkanes C22-C34. Dehydroabietic acid was found in both lichen and mycobiont. The occurrence of different amounts of n-alkanes and fatty acids in the photobionts and mycobionts of X. parietina was shown for the first time. Lichens collected from different locations in the Jerusalem hills contained n-alkanes ranging in concentration from 187 to 211 mg x (g dry wt)-1; n-alkane concentrations in the photobiont and mycobiont were 17-24 and 215-262 mg x (g dry wt)-1, respectively.  相似文献   

13.
Fatty acid components, in both the free and combined form of the intact tropical lichen Teloschistes flavicans, and its isolated photobiont and mycobiont, were analyzed by GC-MS of derived methyl esters. Its rDNA analysis confirmed that the isolated cultured symbionts belong to the genera Trebouxia and Teloschistes, respectively. The fatty acid composition of the lichen did not correspond to those found in the isolated symbionts, suggesting that the fatty acid metabolism is markedly influenced by the symbiosis. Differences in the fatty acid composition in the lichen were observed during the summer (27 degrees C), when the main fatty acids were saturated and in the winter (22 degrees C) when an increase of unsaturated fatty acids occurred. Similar differences of composition were also observed for the cultured mycobiont at different temperatures. The increase in the unsaturation level at low temperatures would maintain the membrane fluidity. Our results are the first on the fatty acids of a tropical lichen and suggest that it is sensitive to small temperature variations, which influences its saturated and unsaturated fatty acid composition.  相似文献   

14.
Lichens as symbiotic associations consisting of a fungus (the mycobiont) and a photosynthetic partner (the photobiont) dominate the terrestrial vegetation of continental Antarctica. The photobiont provides carbon nutrition for the fungus. Therefore, performance and protection of photosystem II is a key factor of lichen survival. Potentials and limitations of photobiont physiology require intense investigation to extend the knowledge on adaptation mechanisms in the lichen symbiosis and to clarify to which extent photobionts benefit from symbiosis. Isolated photobionts and entire lichen thalli have been examined. The contribution of the photobiont concerning adaptation mechanisms to the light regime and temperature conditions was examined by chlorophyll a fluorescence and pigment analysis focusing on the foliose lichen Umbilicaria decussata from North Victoria Land, continental Antarctica. No photoinhibition has been observed in the entire lichen thallus. In the isolated photobionts, photoinhibition was clearly temperature dependent. For the first time, melanin in U. decussata thalli has been proved. Though the isolated photobiont is capable of excess light protection, the results clearly show that photoprotection is significantly increased in the symbiotic state. The closely related photobiont of Pleopsidium chlorophanum, a lichen lacking melanin, showed a higher potential of carotenoid-based excess light tolerance. This fact discriminates the two photobionts of the same Trebouxia clade. Based on the results, it can be concluded that the successful adaptation of lichens to continental Antarctic conditions is in part based on the physiological potential of the photobionts. The findings provide information on the success of symbiotic life in extreme environments.  相似文献   

15.
16.
The development of many complex stratified lichen thalli is made through stages of complex phenotypic interactions between a filamentous fungus (the mycobiont), and a trebouxioid alga (the photobiont). Typically, the second stage of this symbiotic development is marked by the envelopment of the photobiont by the mycobiont through increased lateral hyphal branching and the formation of appressoria. Previously, the mycobiont’s envelopment of photobiont cells was considered thigmotropic (a growth response due to shape) as a mycobiont can envelop algal sized objects in its environment. However, after growing the mycobiontCladonia grayi with various phototrophs and glass beads, we conclude that the mycobiont does not show this characteristic second stage morphological response when grown in non-compatible pairings. Instead,C. grayi displays a distinctive morphological growth response only in compatible symbiotic pairings, such as with its natural photobiontAsterochlor’is sp.  相似文献   

17.
Nitrogen (N) availability and light exposure were manipulated under field conditions to study responses to altered resource supply in the green algal lichen Platismatia glauca. The lichen was fertilized with different concentrations and frequencies of ammonium, nitrate or glutamine under different light regimes for 2-3 months. Responses were followed from the intact thallus to the cellular level. Despite significant differences in overall light exposure, light conditions were not significantly different among treatments when the lichens were wet and active. Ammonium was the preferred N source, followed by glutamine and then nitrate. Thallus N concentration as well as the chlorophyll a (Chl a) concentration increased 3-4-fold at the highest ammonium concentration, while the mycobiont ergosterol concentration remained unaltered. Growth was significantly enhanced by the enhanced N supply, with the increase in dry weight varying from 3 to 30%. Variation in Chl a concentration explained 31% of this variation, suggesting a causal link to the increased growth rate. Platismatia glauca responded to increased N availability by increasing its growth rate and carbon assimilation capacity through increased investments in the photobiont cells. This suggests a tight regulation of resource investments and metabolic pathways between the symbionts of this lichen.  相似文献   

18.
Microbial symbionts are instrumental to the ecological and long‐term evolutionary success of their hosts, and the central role of symbiotic interactions is increasingly recognized across the vast majority of life. Lichens provide an iconic group for investigating patterns in species interactions; however, relationships among lichen symbionts are often masked by uncertain species boundaries or an inability to reliably identify symbionts. The species‐rich lichen‐forming fungal family Parmeliaceae provides a diverse group for assessing patterns of interactions of algal symbionts, and our study addresses patterns of lichen symbiont interactions at the largest geographic and taxonomic scales attempted to date. We analysed a total of 2356 algal internal transcribed spacer (ITS) region sequences collected from lichens representing ten mycobiont genera in Parmeliaceae, two genera in Lecanoraceae and 26 cultured Trebouxia strains. Algal ITS sequences were grouped into operational taxonomic units (OTUs); we attempted to validate the evolutionary independence of a subset of the inferred OTUs using chloroplast and mitochondrial loci. We explored the patterns of symbiont interactions in these lichens based on ecogeographic distributions and mycobiont taxonomy. We found high levels of undescribed diversity in Trebouxia, broad distributions across distinct ecoregions for many photobiont OTUs and varying levels of mycobiont selectivity and specificity towards the photobiont. Based on these results, we conclude that fungal specificity and selectivity for algal partners play a major role in determining lichen partnerships, potentially superseding ecology, at least at the ecogeographic scale investigated here. To facilitate effective communication and consistency across future studies, we propose a provisional naming system for Trebouxia photobionts and provide representative sequences for each OTU circumscribed in this study.  相似文献   

19.
《Fungal biology》2021,125(12):999-1008
The synthesis of various unique secondary metabolites by lichens is the result of mutualistic symbiotic association between the mycobiont and autotrophic photobiont. The function of these compounds and causal factors for their production are not fully understood. This paper examines the effect of heavy-metal bioaccumulation and physiological parameters related to photosynthesis and carbon metabolism on the production of lichen substances in hyperaccumulator Diploschistes muscorum. The obtained model of secondary metabolite concentrations in the thalli demonstrates that the carbon source provided by the photobiont and associated polyols produced by the mycobiont have positive impact on the production; on the contrary, the increased intracellular load of heavy metals and excessive loss of cell membrane integrity adversely affected secondary metabolite contents. Additionally, the production of secondary metabolites appears to be more dependent on intracellular metal concentrations than on soil pollution level. To compensate for metal stress, both efficient functioning of algal component and sufficient production of secondary metabolites are required. The balanced physiological functioning of mycobiont and photobiont constitutes the complex protective mechanism to alleviate the harmful effects of heavy metal stress on primary and secondary metabolism of lichens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号