首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
RhoGDIs revisited: novel roles in Rho regulation   总被引:4,自引:0,他引:4  
Small GTP-binding proteins of the Rho/Rac/Cdc42 family combine their GDP/GTP cycle, regulated by guanine nucleotide-exchange factors and GTPase-activating proteins, to a cytosol/membrane cycle, regulated by guanine nucleotide dissociation inhibitors (rhoGDIs). RhoGDIs are endowed with dual functions in the cytosol where they form soluble complexes with geranylgeranylated GDP-bound Rho proteins and at membrane interfaces where they monitor the delivery and extraction of Rho proteins to/from their site of action. They have little diversity compared with other Rho protein regulators and therefore have been regarded mostly as housekeeping regulators that distribute Rho proteins equally to any membranes. Recently, acquired data show that rhoGDIs, by interacting with candidate receptors/displacement factors or by phosphorylation, may in fact have active contributions to targeting Rho proteins to specific subcellular membranes and signaling pathways. In addition, the GDP/GTP and membrane/cytosol cycles can be uncoupled in certain cases, with Rho proteins either escaping the membrane/cytosol cycle or being regulated by rhoGDIs in their GTP-bound form. Here, we survey recent structure-function relationships and cellular studies on rhoGDIs and revisit their classical housekeeping role into novel and more specific functions. We also review their involvement in diseases.  相似文献   

2.
BACKGROUND: Members of the Rho family of small GTP-binding proteins, such as Rho, Rac and Cdc42, have a role in a wide range of cell responses. These proteins function as molecular switches by virtue of a conformational change between the GTP-bound (active) and GDP-bound (inactive) forms. In addition, most members of the Rho and Rac subfamilies cycle between the cytosol and membrane. The cytosolic guanine nucleotide dissociation inhibitors, RhoGDIs, regulate both the GDP/GTP exchange cycle and the membrane association/dissociation cycle. RESULTS: We have used NMR spectroscopy and site-directed mutagenesis to identify the regions of human RhoGDI-1 that are involved in binding Rac-1. The results emphasise the importance of the flexible regions of both proteins in the interaction. At least one specific region (residues 46-57) of the flexible N-terminal domain of RhoGDI, which has a tendency to form an amphipathic helix in the free protein, makes a major contribution to the binding energy of the complex. In addition, the primary site of Rac-1 binding on the folded domain of RhoGDI involves the beta4-beta5 and beta6-beta7 loops, with a slight movement of the 3(10) helix accompanying the interaction. This binding site is on the same face of the protein as the binding site for the isoprenyl group of post-translationally modified Rac-1, but is distinct from this site. CONCLUSIONS: Isoprenylated Rac-1 appears to interact with three distinct sites on RhoGDI. The isoprenyl group attached to the C terminus of Rac-1 binds in a pocket in the folded domain of RhoGDI. This is distinct from the major site on this domain occupied by Rac-1 itself, which involves two loops at the opposite end to the isoprenyl-binding site. It is probable that the flexible C-terminal region of Rac-1 extends from the site at which Rac-1 contacts the folded domain of RhoGDI to allow the isoprenyl group to bind in the pocket at the other end of the RhoGDI molecule. Finally, the flexible N terminus of RhoGDI-1, and particularly residues 48-58, makes a specific interaction with Rac-1 which contributes substantially to the binding affinity.  相似文献   

3.
Guanine nucleotide dissociation inhibitors (GDIs) regulate both GDP/GTP and membrane association/dissociation cycles of Rho/Rac and Rab proteins.RhoGDI-3 is distinguishable from other rhoGDI proteins by its partial association with a detergent-resistant subcellular fraction. Here, we investigate the activity of this unusual rhoGDI using confocal laser scanning microscopy, immuno-isolation, and rhoGDI-3 mutants. We establish that the noncytosolic fraction of rhoGDI-3 is associated with the Golgi apparatus. The domain involved in this association is the unique N-terminal segment of rhoGDI-3 predicted to form an amphipathic α helix. This peptide is indispensable for Golgi association of rhoGDI-3 and sufficient to address a green fluorescent protein to the Golgi apparatus. Site-directed mutations, decreasing the hydrophobic surface of the helix, localize rhoGDI-3 into the cytoplasm. We establish that rhoGDI-3 is able to inhibit activation of the RhoG protein and to target this protein to the Golgi apparatus. Furthermore, we demonstrate the importance of the rhoGDI-3 N-terminal segment for both Golgi targeting and stability of the cytoplasmic RhoG/rhoGDI-3 complex. RhoGDI-3 is the first example of a GDI directly involved in the delivery of a Rho protein to a specific subcellular compartment.  相似文献   

4.
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotides in the presence or absence of Mg(2+) similarly, with dissociation constants in the submicromolar concentration. The presence of Mg(2+), however, resulted in a marked decrease in the intrinsic dissociation rates of the nucleotides. The catalytic activity of the guanine nucleotide exchange factors (GEFs) appeared to be negatively regulated by free Mg(2+), and GEF binding to Rho GTPase resulted in a 10-fold decrease in affinity for Mg(2+), suggesting that one role of GEF is to displace bound Mg(2+) from the Rho proteins. The GDP dissociation rates of the GTPases could be further stimulated by GEF upon removal of bound Mg(2+), indicating that the GEF-catalyzed nucleotide exchange involves a Mg(2+)-independent as well as a Mg(2+)-dependent mechanism. Although Mg(2+) is not absolutely required for GTP hydrolysis by the Rho GTPases, the divalent ion apparently participates in the GTPase reaction, since the intrinsic GTP hydrolysis rates were enhanced 4-10-fold upon binding to Mg(2+), and k(cat) values of the Rho GTPase-activating protein (RhoGAP)-catalyzed reactions were significantly increased when Mg(2+) was present. Furthermore, the p50RhoGAP specificity for Cdc42 was lost in the absence of Mg(2+) cofactor. These studies directly demonstrate a role of Mg(2+) in regulating the kinetics of nucleotide binding and hydrolysis and in the GEF- and GAP-catalyzed reactions of Rho family GTPases. The results suggest that GEF facilitates nucleotide exchange by destabilizing both bound nucleotide and Mg(2+), whereas RhoGAP utilizes the Mg(2+) cofactor to achieve high catalytic efficiency and specificity.  相似文献   

5.
Rho family-specific guanine nucleotide dissociation inhibitors (RhoGDIs) decrease the rate of nucleotide dissociation and release Rho proteins such as RhoA, Rac and Cdc42 from membranes, forming tight complexes that shuttle between cytosol and membrane compartments. We have solved the crystal structure of a complex between the RhoGDI homolog LyGDI and GDP-bound Rac2, which are abundant in leukocytes, representing the cytosolic, resting pool of Rho species to be activated by extracellular signals. The N-terminal domain of LyGDI (LyN), which has been reported to be flexible in isolated RhoGDIs, becomes ordered upon complex formation and contributes more than 60% to the interface area. The structure is consistent with the C-terminus of Rac2 binding to a hydrophobic cavity previously proposed as isoprenyl binding site. An inner segment of LyN forms a helical hairpin that contacts mainly the switch regions of Rac2. The architecture of the complex interface suggests a mechanism for the inhibition of guanine nucleotide dissociation that is based on the stabilization of the magnesium (Mg2+) ion in the nucleotide binding pocket.  相似文献   

6.
Following stimulation of NRK49F rat kidney fibroblast cells with epidermal growth factor, possible preemptive cross-talk between arginine methylation and serine and tyrosine phosphorylation was observed for Rho guanidine nucleotide dissociation inhibitor 1 (RhoGDI-1). Five dimethylation sites (Lys50, Lys52, Arg111, Arg152, Arg180) and two new phosphorylation sites (Tyr144, Ser148) were identified for RhoGDI-1. All presently known phosphorylation sites for RhoGDI-1 lie within the 10 residues immediately prior to the 3 sites for arginine dimethylation, and these dimethylation/phosphorylation modules may constitute functional switches. Consideration of structural data and other literature for RhoGDI-1 suggests that methylation and phosphorylation cooperatively affect formation of complexes with different Rho/Rac family proteins and that methylation may be crucial in partitioning of RhoGDI-1 between different functional roles. On the basis of results presented here, it can be implied that unidentified arginine methyltransferases may exist and that arginine methylation may have a greater role in cellular signaling processes than is currently recognized. The combined use of SILAC labeling of arginine (SILAC = stable isotope labeling by amino acids in cell culture), immobilized metal affinity chromatography based phosphoprotein enrichment, and mass spectrometry is clearly a useful method for this investigation.  相似文献   

7.
《Cellular signalling》2014,26(9):1975-1984
Cytoskeletal reorganization is crucial for platelet adhesion and thrombus formation to avoid excessive bleeding. Major regulators of cytoskeletal dynamics are small GTPases of the Rho family. Rho GTPases become activated by G-protein coupled receptor activation, downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors and by outside-in signaling of integrins. They act as molecular switches and cycle between active and inactive states. GTPase activating proteins (GAPs) stimulate the hydrolysis of GTP to GDP to terminate Rho signaling. Nadrin is a RhoGAP that was recently identified in platelets. Five Nadrin isoforms are known consisting of a unique GAP and an N-terminal BAR domain responsible for the selective regulation of RhoA, Cdc42 and Rac1. Besides BAR domain mediated regulation of Nadrin GAP activity nothing is known about the regulation of Nadrin and the impact on cytoskeletal reorganization. Here we show that Nadrin becomes tyrosine phosphorylated upon platelet activation. We found Src family proteins (Src, Lyn, Fyn) to be responsible to control Nadrin GAP activity by phosphorylation. Interestingly, phosphorylation of Nadrin leads to tightly regulated Rho activation that was found to be Nadrin isoform- and (Rho) target-specific. Src-phosphorylation of Nadrin5 mediated inactivation of Cdc42 while RhoA and Rac1 became activated upon Src-mediated phosphorylation of Nadrin2. Our results suggest a critical role for spatial and temporal regulation of Nadrin and thus for the control of Rho GTPases in platelets.  相似文献   

8.
The Entamoeba histolytica small GTP-binding protein EhRho1 has an unusual amino acid residue at a conserved site found in all known Ras superfamily proteins. EhRho1 has an isoleucine at position 45, which corresponds to position 28 of human Ras and Rac and position 30 of human Rho and Cdc42. All other known small GTPases have an aromatic residue (typically phenylalanine) at this position, and mutation to a leucine renders other Ras proteins constitutively active by reason of diminished affinity for GDP. It was determined that the EhRho1 protein has a half-time of GDP dissociation similar to that of a human Rho protein, HsRhoA, and therefore an isoleucine at this site in EhRho1 is not likely to render EhRho1 constitutively active. It was also found that EhRho1 is not a substrate for the Rho-specific C3 exoenzyme. Thus EhRho1 appears to be an unusual member of the Ras family.  相似文献   

9.
A novel role for RhoGDI as an inhibitor of GAP proteins.   总被引:16,自引:3,他引:13       下载免费PDF全文
J F Hancock  A Hall 《The EMBO journal》1993,12(5):1915-1921
RhoGDI inhibits guanine nucleotide dissociation from post-translationally processed Rho and Rac proteins but its biochemical role in vivo is unknown. We show here that N-terminal effector site mutations in the Rac protein do not compromise its interaction with RhoGDI and that, whilst geranylgeranylation and -AAX proteolysis of the C-terminal CAAX motif of Rac1 and RhoA are required for efficient interaction with RhoGDI, methylesterification of the C-terminal cysteine residue is not required. In vitro, RhoGDI can form stable complexes with Rho and Rac proteins in both the GTP and GDP bound states. Furthermore the Rac-GTP--RhoGDI complex is resistent to the action of recombinant RhoGAP and recombinant BCR. Thus GDI, by complexing with Rac-GTP and preventing GAP stimulated GTP hydrolysis, may allow transit of the activated form of the Rac protein between physically separated activator and effector proteins in the cell.  相似文献   

10.
11.
Rho family GTPases (Cdc42, Rac1, and RhoA) function downstream of Ras [1], and in a variety of cellular processes [2]. Studies to examine these functions have not directly linked endogenous protein interactions with specific in vivo functions of Rho GTPases. Here, we show that endogenous Rac1 and two known binding partners, Rho GDP dissociation inhibitor (RhoGDI) and p21-activated kinase (PAK), fractionate as distinct cytosolic complexes. A Rac1:PAK complex is translocated from the cytosol to ruffling membranes upon cell activation by serum. Overexpression of dominant-negative (T17N) Rac1 does not affect the assembly or distribution of this Rac1:PAK complex. This is the first direct evidence of how a specific function of Rac1 is selected by the assembly and membrane translocation of a distinct Rac1:effector complex.  相似文献   

12.
Post-translational modifications of GTPases from the Ras superfamily enable them to associate with membrane compartments where they exert their biological activities. However, no protein acting like Rho and Rab dissociation inhibitor (GDI) that regulate the membrane association of Rho and Rab GTPases has been described for Ras and closely related proteins. We report here that the delta subunit of retinal rod phosphodiesterase (PDEdelta) is able to interact with prenylated Ras and Rap proteins, and to solubilize them from membranes, independently of their nucleotide-bound (GDP or GTP) state. We show that PDEdelta exhibits striking structural similarities with RhoGDI, namely conservation of the Ig-like fold and presence of a series of hydrophobic residues which could act as in RhoGDI to sequester the prenyl group of its target proteins, thereby providing structural support for the biochemical activity of PDEdelta. We observe that the overexpression of PDEdelta interferes with Ras trafficking and propose that it may play a role in the process that delivers prenylated proteins from endomembranes, once they have undergone proteolysis and carboxymethylation, to the structures that ensure trafficking to their respective resident compartments.  相似文献   

13.
Rac plays a pivotal role in the assembly of the superoxide-generating NADPH oxidase of phagocytes. In resting cells, Rac is found in the cytosol in complex with Rho GDP dissociation inhibitor (RhoGDI). NADPH oxidase assembly involves dissociation of the Rac.RhoGDI complex and translocation of Rac to the membrane. We reported that liposomes containing high concentrations of monovalent anionic phospholipids cause Rac.RhoGDI complex dissociation ( Ugolev, Y., Molshanski-Mor, S., Weinbaum, C., and Pick, E. (2006) J. Biol. Chem. 281, 19204-19219 ). We now designed an in vitro model mimicking membrane phospholipid remodeling during phagocyte stimulation in vivo. We showed that liposomes of "resting cell membrane" composition (less than 20 mol % monovalent anionic phospholipids), supplemented with 1 mol % of polyvalent anionic phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) in conjunction with constitutively active forms of the guanine nucleotide exchange factors (GEFs) for Rac, Trio, or Tiam1 and a non-hydrolyzable GTP analogue, cause dissociation of Rac1(GDP).RhoGDI complexes, GDP to GTP exchange on Rac1, and binding of Rac1(GTP) to the liposomes. Complexes were not dissociated in the absence of GEF and GTP, and optimal dissociation required the presence of PtdIns(3,4,5)P(3) in the liposomes. Dissociation of Rac1(GDP).RhoGDI complexes was correlated with the affinity of particular GEF constructs, via the N-terminal pleckstrin homology domain, for PtdIns(3,4,5)P(3) and involved GEF-mediated GDP to GTP exchange on Rac1. Phagocyte membranes enriched in PtdIns(3,4,5)P(3) responded by NADPH oxidase activation upon exposure in vitro to Rac1(GDP).RhoGDI complexes, p67(phox), GTP, and Rac GEF constructs with affinity for PtdIns(3,4,5)P(3) at a level superior to that of native membranes.  相似文献   

14.
The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPases in C. elegans.  相似文献   

15.
The activation of the Rac1 GTPase during cell signalling entails its translocation from the cytosol to membranes, release from sequestering Rho GDP dissociation inhibitors (RhoGDI), and GDP/GTP exchange. In addition to those steps, we show here that optimal Rac1 activation during cell signalling requires the engagement of a downstream, cytoskeletal-based feedback loop nucleated around the cytoskeletal protein coronin 1A and the Rac1 exchange factor ArhGEF7. These two proteins form a cytosolic complex that, upon Rac1-driven F-actin polymerization, translocates to juxtamembrane areas where it expands the pool of activated, membrane-bound Rac1. Such activity requires the formation of an F-actin/ArhGEF7-dependent physical complex of coronin 1A with Pak1 and RhoGDIα that, once assembled, promotes the Pak1-dependent dissociation of Rac1 from the Rac1/RhoGDIα complex and subsequent Rac1 activation. Genetic evidence demonstrates that this relay circuit is essential for generating sustained Rac1 activation levels during cell signalling.  相似文献   

16.
The small guanosine triphosphotases (GTPases) Rho proteins are members of the Ras-like superfamily. Similar to Ras, most Rho GTPases cycle between active GTP-bound, and inactive GDP-bound conformations and act as molecular switches that control multiple cellular functions. While most Rho GTPases are expressed widely, the expression of Rac2 and RhoH are restricted to hematopoietic cells. RhoH is an atypical GTPase that lacks GTPase activity and remains in the active conformation. The generation of mouse knock-out lines has led to new understanding of the functions of both of these proteins in blood cells. The phenotype of these mice also led to the identification of mutations in human RAC2 and RHOH genes and the role of these proteins in immunodeficiency diseases. This review outlines the basic biology of Rho GTPases, focusing on Rac and RhoH and summarizes human diseases associated with mutations of these genes.  相似文献   

17.
Ras-like small GTPases cycle between GTP-bound active and GDP-bound inactive conformational states to regulate diverse cellular processes. Despite their importance, detailed kinetic or comparative studies of family members are rarely undertaken due to the lack of real-time assays measuring nucleotide binding or exchange. Here we report a bead-based flow cytometric assay that quantitatively measures the nucleotide binding properties of glutathione-S-transferase (GST) chimeras for prototypical Ras family members Rab7 and Rho. Measurements are possible in the presence or absence of Mg2+, with magnesium cations principally increasing affinity and slowing nucleotide dissociation rates 8- to 10-fold. GST-Rab7 exhibited a 3-fold higher affinity for guanosine diphosphate (GDP) relative to guanosine triphosphate (GTP) that is consistent with a 3-fold slower dissociation rate of GDP. Strikingly, GST-Rab7 had a marked preference for GTP with ribose ring-conjugated BODIPY FL. The more commonly used γ-NH-conjugated BODIPY FL GTP analogue failed to bind to GST-Rab7. In contrast, both BODIPY analogues bound equally well to GST-RhoA and GST-RhoC. Comparisons of the GST-Rab7 and GST-RhoA GTP binding pockets provide a structural basis for the observed binding differences. In sum, the flow cytometric assay can be used to measure nucleotide binding properties of GTPases in real time and to quantitatively assess differences between GTPases.  相似文献   

18.
The biochemical role of guanine nucleotide exchange factors (GEFs) in catalyzing small GTPase GDP-GTP exchange is thought to be twofold: stimulation of GDP dissociation and stabilization of a nucleotide-free GTPase intermediate. Here we report that TrioN, a Dbl family GEF, activates Rac1 by facilitating GTP binding to, as well as stimulating GDP dissociation from, Rac1. The TrioN-catalyzed GDP dissociation is dependent upon the structural nature and the concentration of free nucleotide, and nucleotide binding serves as the rate-limiting step of the GEF reaction. The TrioN-stimulated nucleotide exchange may undergo a novel two nucleotide-one G-protein intermediate involving two cryptic subsites on Rac1 induced by the GEF, with one subsite contributing to the recognition of the beta/gamma phosphates of the incoming GTP and another to the binding of the guanine base of the leaving GDP. We propose that the Rac GEF reaction may proceed by competitive displacement of bound GDP by GTP through a transient intermediate of GEF-[GTP-Rac-GDP].  相似文献   

19.
Geyer M  Wilde C  Selzer J  Aktories K  Kalbitzer HR 《Biochemistry》2003,42(41):11951-11959
The lethal toxin (LT) from Clostridium sordellii, which belongs to the family of large clostridial cytotoxins, acts as a monoglucosyltransferase for the Rho subfamily GTPase Rac and also modifies Ras. In the present study we investigated structural changes of H-Ras in its di- and triphosphate form that occur upon glucosylation of the effector domain amino acid threonine-35 by LT. (31)P NMR experiments recorded during the enzymatic glucosylation process, using UDP-glucose as a cosubstrate, show that the modification of the threonine side chain influences the chemical shifts of the phosphate groups of the bound nucleotides. In the diphosphate-bound form (Ras.GDP) glucosylation of Thr35 induces only small changes in the chemical environment of the active center. In the triphosphate form with the GTP analogue GppNHp bound (Ras.GppNHp) Ras shows at least two different conformations in the active center that exchange on a medium-range time scale (10 to 0.1 ms). Glucosylation selectively stabilizes one distinct conformation of the effector loop (state 1) with tyrosine-32 probably apart from the nucleotide and threonine-35 not involved in magnesium ion coordination. This conformation is known to have a low affinity to effector proteins such as Raf-1, AF-6, or Byr2 and thus prevents the transduction of the activation signal in the Ras-mediated pathway. NMR correlation spectra of Ras(T35glc).GDP and denaturation experiments with urea indicate that the glucose is bound in the alpha-anomeric form to the hydroxyl group of the threonine-35 side chain. Inhibition of the glucosylation reaction by 1,5-gluconolactone suggests a stereospecific reaction mechanism with a glucosyl oxonium ion transition state for the enzymatic activity of LT.  相似文献   

20.
Adenovirus (Ad) endocytosis via αv integrins requires activation of the lipid kinase phosphatidylinositol-3-OH kinase (PI3K). Previous studies have linked PI3K activity to both the Ras and Rho signaling cascades, each of which has the capacity to alter the host cell actin cytoskeleton. Ad interaction with cells also stimulates reorganization of cortical actin filaments and the formation of membrane ruffles (lamellipodia). We demonstrate here that members of the Rho family of small GTP binding proteins, Rac and CDC42, act downstream of PI3K to promote Ad endocytosis. Ad internalization was significantly reduced in cells treated with Clostridium difficile toxin B and in cells expressing a dominant-negative Rac or CDC42 but not a H-Ras protein. Viral endocytosis was also inhibited by cytochalasin D as well as by expression of effector domain mutants of Rac or CDC42 that impair cytoskeletal function but not JNK/MAP kinase pathway activation. Thus, Ad endocytosis requires assembly of the actin cytoskeleton, an event initiated by activation of PI3K and, subsequently, Rac and CDC42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号