首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Adaptive evolutionary responses are determined by the strength of selection and amount of genetic variation within traits, however, both are known to vary across environmental conditions. As selection is generally expected to be strongest under stressful conditions, understanding how the expression of genetic variation changes across stressful and benign environmental conditions is crucial for predicting the rate of adaptive change. Although theory generally predicts increased genetic variation under stress, previous syntheses of the field have found limited support for this notion. These studies have focused on heritability, which is dependent on other environmentally sensitive, but nongenetic, sources of variation. Here, we aim to complement these studies with a meta‐analysis in which we examine changes in coefficient of variation (CV) in maternal, genetic, and residual variances across stressful and benign conditions. Confirming previous analyses, we did not find any clear direction in how heritability changes across stressful and benign conditions. However, when analyzing CV, we found higher genetic and residual variance under highly stressful conditions in life‐history traits but not in morphological traits. Our findings are of broad significance to contemporary evolution suggesting that rapid evolutionary adaptive response may be mediated by increased evolutionary potential in stressed populations.  相似文献   

2.
Environmental conditions of a parent plant can influence the performance of their clonal offspring, and such clonal transgenerational effects may help offspring adapt to different environments. However, it is still unclear how many vegetative generations clonal transgenerational effects can transmit for and whether it depends on the environmental conditions of the offspring. We grew the ancestor ramets of the floating clonal plant Spirodela polyrhiza under a high and a low nutrient level and obtained the so-called 1st-generation offspring ramets of two types (from these two environments). Then we grew the 1st-generation offspring ramets of each type under the high and the low nutrient level and obtained the so-called 2nd-generation offspring ramets of four types. We repeated this procedure for another five times and analyzed clonal transgenerational effects on growth, morphology and biomass allocation of the 1st- to the 6th-generation offspring ramets. We found positive, negative or neutral (no) transgenerational effects of the ancestor nutrient condition on the offspring of S. polyrhiza, depending on the number of vegetative generations, the nutrient condition of the offspring environment and the traits considered. We observed significant clonal transgenerational effects on the 6th-generation offspring; such effects occurred for all three types of traits (growth, morphology and allocation), but varied depending on the nutrient condition of the offspring environment and the traits considered. Our results suggest that clonal transgenerational effects can transmit for multiple vegetative generations and such impacts can vary depending on the environmental conditions of offspring.  相似文献   

3.
Phenotypic plasticity can occur across generations (transgenerational plasticity) when environments experienced by the previous generations influenced offspring phenotype. The evolutionary importance of transgenerational plasticity, especially regarding within‐generational plasticity, is a currently hot topic in the plasticity framework. How long an environmental effect can persist across generations and whether multigenerational effects are cumulative are primordial—for the evolutionary significance of transgenerational plasticity—but still unresolved questions. In this study, we investigated how the grand‐parental, parental and offspring exposures to predation cues shape the predator‐induced defences of offspring in the Physa acuta snail. We expected that the offspring phenotypes result from a three‐way interaction among grand‐parental, parental and offspring environments. We exposed three generations of snails without and with predator cues according to a full factorial design and measured offspring inducible defences. We found that both grand‐parental and parental exposures to predator cues impacted offspring antipredator defences, but their effects were not cumulative and depended on the defences considered. We also highlighted that the grand‐parental environment did alter reaction norms of offspring shell thickness, demonstrating an interaction between the grand‐parental transgenerational plasticity and the within‐generational plasticity. We concluded that the effects of multigenerational exposure to predator cues resulted on complex offspring phenotypic patterns which are difficult to relate to adaptive antipredator advantages.  相似文献   

4.
  • The environment experienced by plants can influence the phenotype of their offspring. Such transgenerational plasticity can be adaptive when it results in higher fitness of the offspring under conditions correlated with those experienced by the mother plant. However, it has rarely been tested if such anticipatory parental effects may be induced with different environments.
  • We grew clonal replicates of Silene vulgaris under control conditions and three types of stress (nutrient deficiency, copper addition and drought), which are known from natural populations of the species. We then subjected offspring from differently treated mother plants to each of the different stress treatments to analyse the influence of maternal and offspring environment on performance and several functional traits.
  • Current stress treatments strongly influenced biomass and functional traits of the plants, mostly in line with responses predicted by the theory of functional equilibrium. Plant performance was also influenced by maternal stress treatments, and some effects independent of initial size differences remained until harvest. In particular, stressed mothers produced offspring of higher fitness than control plants. However, there was no evidence for treatment‐specific adaptive transgenerational plasticity, as offspring from a mother plant that had grown in a specific environment did not grow better in that environment than other plants.
  • Our results indicate that the maternal environment may affect offspring traits and performance, but also that this transgenerational plasticity is not necessarily adaptive.
  相似文献   

5.
Plant phenotypes can be affected by environments experienced by their parents. Parental environmental effects are reported for the first offspring generation and some studies showed persisting environmental effects in second and further offspring generations. However, the expression of these transgenerational effects proved context-dependent and their reproducibility can be low. Here we study the context-dependency of transgenerational effects by evaluating parental and transgenerational effects under a range of parental induction and offspring evaluation conditions. We systematically evaluated two factors that can influence the expression of transgenerational effects: single- versus multiple-generation exposure and offspring environment. For this purpose, we exposed a single homozygous Arabidopsis thaliana Col-0 line to salt stress for up to three generations and evaluated offspring performance under control and salt conditions in a climate chamber and in a natural environment. Parental as well as transgenerational effects were observed in almost all traits and all environments and traced back as far as great-grandparental environments. The length of exposure exerted strong effects; multiple-generation exposure often reduced the expression of the parental effect compared to single-generation exposure. Furthermore, the expression of transgenerational effects strongly depended on offspring environment for rosette diameter and flowering time, with opposite effects observed in field and greenhouse evaluation environments. Our results provide important new insights into the occurrence of transgenerational effects and contribute to a better understanding of the context-dependency of these effects.  相似文献   

6.
Food shortage is an important selective factor shaping animal life‐history trajectories. Yet, despite its role, many aspects of the interaction between parental and offspring food environments remain unclear. In this study, we measured developmental plasticity in response to food availability over two generations and tested the relative contribution of paternal and maternal food availability to the performance of offspring reared under matched and mismatched food environments. We applied a cross‐generational split‐brood design using the springtail Orchesella cincta, which is found in the litter layer of temperate forests. The results show adverse effects of food limitation on several life‐history traits and reproductive performance of both parental sexes. Food conditions of both parents contributed to the offspring phenotypic variation, providing evidence for transgenerational effects of diet. Parental diet influenced sons’ age at maturity and daughters’ weight at maturity. Specifically, being born to food‐restricted parents allowed offspring to alleviate the adverse effects of food limitation, without reducing their performance under well‐fed conditions. Thus, parents raised on a poor diet primed their offspring for a more efficient resource use. However, a mismatch between maternal and offspring food environments generated sex‐specific adverse effects: female offspring born to well‐fed mothers showed a decreased flexibility to deal with low‐food conditions. Notably, these maternal effects of food availability were not observed in the sons. Finally, we found that the relationship between age and size at maturity differed between males and females and showed that offspring life‐history strategies in O. cincta are primed differently by the parents.  相似文献   

7.
Diet quality influences organismal fitness within and across generations.For herbivorous insects,the transgenerational effecets of diet remain relatively underexplored.Usinga3×3×2 factorial experiment,we evaluated how N enrichment in parental diets of Neolemd abbreviata(Larcordaire)(C oleoptera:Chrysomelidae),a biological control agent for Tradescantia fluminensis Vell.(Commelinaceae),may influence life history and performance of Fi and F2 offspring under reciprocal experiments.We found limited transgenerational effects of foliar nitrogen variability among life-history traits in both larvae and adults.Larval weight gain and mortality were responsive to parental diet contrary to feeding damage,pupal weight and duration taken to pupate.There were significant parental diet x test interactions in larval feeding damage,weight gain,pupal weight and time to pupation.Generally,offspring from parents under high N plants performed better even under low N test plants.Adult traits including oviposition selection,feeding weight and longevity did not respond to the efects of parental diet nor its interaction with test diet as was the case in the larval stage.However,the main efects of test diet were more important in determining adult performance in both generations suggesting limited sensitivity to parental diet in the adult stage.Our results show conflicting responses to parental diet between larvae and adults ofthe same generation among an insec species with both actively feeding larual and adult life stagee These tranegeneratinonal efferte,or lack thereof,may have implications on the field performance of N.abbrevita under heterogencous nutritional landscapes.  相似文献   

8.
Adaptive plasticity is expected to be important when the grain of environmental variation is encompassed in offspring dispersal distance. We investigated patterns of local adaptation, selection and plasticity in an association of plant morphology with fine-scale habitat shifts from oak canopy understory to adjacent grassland habitat in Claytonia perfoliata. Populations from beneath the canopy of oak trees were >90 % broad leaved and large seeded, while plants from adjacent grassland habitat were >90 % linear-leaved and small seeded. In a 2-year study, we used reciprocal transplants and phenotypic selection analysis to investigate local adaptation, selection, plasticity and maternal effects in this trait-environment association. Transgenerational effects were studied by planting offspring of inbred maternal families grown in both environments across the same environments in the second year. Reciprocal transplants revealed local adaptation to habitat type: broad-leaved forms had higher fitness in oak understory and linear-leaved plants had higher fitness in open grassland habitat. Phenotypic selection analyses indicated selection for narrower leaves and lower SLA in open habitat, and selection for broad leaves and intermediate values of SLA in understory. Both plant morphs exhibited plastic responses in traits in the same direction as selection on traits (narrower leaves and lower SLA in open habitat) suggesting that plasticity is adaptive. We detected an adaptive transgenerational effect in which maternal environment influenced offspring fitness; offspring of grassland-reared plants had higher fitness than understory-reared plants when grown in grassland. We did not detect costs of plasticity, but did find a positive association between leaf shape plasticity and fitness in linear-leaved plants in grassland habitat. Together, these findings indicate that fixed differences in trait values corresponding to selection across habitat contribute to local adaptation, but that plasticity and maternal environmental effects may be favored through promotion of survival across heterogeneous environments.  相似文献   

9.
Effects of parental environment on offspring traits have been well known for decades. Interest in this transgenerational form of phenotypic plasticity has recently surged due to advances in our understanding of its mechanistic basis. Theoretical research has simultaneously advanced by predicting the environmental conditions that should favor the adaptive evolution of transgenerational plasticity. Yet whether such conditions actually exist in nature remains largely unexplored. Here, using long‐term climate data, we modeled optimal levels of transgenerational plasticity for an organism with a one‐year life cycle at a spatial resolution of 4 km2 across the continental United States. Both annual temperature and precipitation levels were often autocorrelated, but the strength and direction of these autocorrelations varied considerably even among nearby sites. When present, such environmental autocorrelations render offspring environments statistically predictable based on the parental environment, a key condition for the adaptive evolution of transgenerational plasticity. Results of our optimality models were consistent with this prediction: High levels of transgenerational plasticity were favored at sites with strong environmental autocorrelations, and little‐to‐no transgenerational plasticity was favored at sites with weak or nonexistent autocorrelations. These results are among the first to show that natural patterns of environmental variation favor the evolution of adaptive transgenerational plasticity. Furthermore, these findings suggest that transgenerational plasticity is likely variable in nature, depending on site‐specific patterns of environmental variation.  相似文献   

10.
Phenotypes respond to environments experienced directly by an individual, via phenotypic plasticity, or to the environment experienced by ancestors, via transgenerational environmental effects. The adaptive value of environmental effects depends not only on the strength and direction of the induced response but also on how long the response persists within and across generations, and how stably it is expressed across environments that are encountered subsequently. Little is known about the genetic basis of those distinct components, or even whether they exhibit genetic variation. We tested for genetic differences in the inducibility, temporal persistence, and environmental stability of transgenerational environmental effects in Arabidopsis thaliana. Genetic variation existed in the inducibility of transgenerational effects on traits expressed across the life cycle. Surprisingly, the persistence of transgenerational effects into the third generation was uncorrelated with their induction in the second generation. Although environmental effects for some traits in some genotypes weakened over successive generations, others were stronger or even in the opposite direction in more distant generations. Therefore, transgenerational effects in more distant generations are not merely caused by the retention or dissipation of those expressed in prior generations, but they may be genetically independent traits with the potential to evolve independently.  相似文献   

11.
Habitat degradation and loss can result in population decline and genetic erosion, limiting the ability of organisms to cope with environmental change, whether this is through evolutionary genetic response (requiring genetic variation) or through phenotypic plasticity (i.e., the ability of a given genotype to express a variable phenotype across environments). Here we address the question whether plants from small populations are less plastic or more susceptible to environmental stress than plants from large populations. We collected seed families from small (<100) versus large natural populations (>1,000 flowering plants) of the rare, endemic plant Cochlearia bavarica (Brassicaceae). We exposed the seedlings to a range of environments, created by manipulating water supply and light intensity in a 2 x 2 factorial design in the greenhouse. We monitored plant growth and survival for 300 days. Significant effects of offspring environment on offspring characters demonstrated that there is phenotypic plasticity in the responses to environmental stress in this species. Significant effects of population size group, but mainly of population identity within the population size groups, and of maternal plant identity within populations indicated variation due to genetic (plus potentially maternal) variation for offspring traits. The environment x maternal plant identity interaction was rarely significant, providing little evidence for genetically- (plus potentially maternally-) based variation in plasticity within populations. However, significant environment x population-size-group and environment x population-identity interactions suggested that populations differed in the amount of plasticity, the mean amount being smaller in small populations than in large populations. Whereas on day 210 the differences between small and large populations were largest in the environment in which plants grew biggest (i.e., under benign conditions), on day 270 the difference was largest in stressful environments. These results show that population size and population identity can affect growth and survival differently across environmental stress gradients. Moreover, these effects can themselves be modified by time-dependent variation in the interaction between plants and their environment.  相似文献   

12.
Many species exhibit transgenerational plasticity by which environmental cues experienced by either parent can be transmitted to their offspring, resulting in phenotypic variants in offspring to match ancestral environments. However, the manner by which paternal experiences affect offspring plasticity through epigenetic inheritance in animals generally remains unclear. In this study, we examined the transgenerational effects of population density on phase‐related traits in the migratory locust Locusta migratoria. Using an experimental design that explicitly controls genetic background, we found that the effects of crowd or isolation rearing on phase plasticity could be inherited to the offspring. The isolation of gregarious locusts resulted in reduced weight in offspring eggs and altered morphometric traits in hatchlings, whereas crowding of solitarious locusts exhibited opposite effects. The consequences of density changes were transmitted by both maternal and paternal inheritance, although the expression of paternal effects was not as pronounced as that of maternal effects. Prominent expression of heat‐shock proteins (Hsps), such as Hsp90, Hsp70 and Hsp20.6, could be triggered by density changes. Hsps were significantly upregulated upon crowding but downregulated upon isolation. The variation in parental Hsp expression was also transmitted to the offspring, in which the pattern of inheritance was consistent with that of phase characteristics. These results revealed a paternal effect on phase polyphenism and Hsp expression induced by population density, and defined a model system that could be used to study the paternal epigenetic inheritance of environmental changes.  相似文献   

13.
Understanding the responses of biodiversity to drivers of change and the effects of biodiversity on ecosystem properties and ecosystem services is a key challenge in the context of global environmental change. We performed a systematic review and meta‐analysis of the scientific literature linking direct drivers of change and ecosystem services via functional traits of three taxonomic groups (vegetation, invertebrates, and vertebrates) to: (1) uncover trends and research biases in this field; and (2) synthesize existing empirical evidence. Our results show the existence of important biases in published studies related to ecosystem types, taxonomic groups, direct drivers of change, ecosystem services, geographical range, and the spatial scale of analysis. We found multiple evidence of links between drivers and services mediated by functional traits, particularly between land‐use changes and regulating services in vegetation and invertebrates. Seventy‐five functional traits were recorded in our sample. However, few of these functional traits were repeatedly found to be associated with both the species responses to direct drivers of change (response traits) and the species effects on the provision of ecosystem services (effect traits). Our results highlight the existence of potential “key functional traits,” understood as those that have the capacity to influence the provision of multiple ecosystem services, while responding to specific drivers of change, across a variety of systems and organisms. Identifying “key functional traits” would help to develop robust indicator systems to monitor changes in biodiversity and their effects on ecosystem functioning and ecosystem services supply.  相似文献   

14.
Phenotypes of plants, and thus their ecology and evolution, can be affected by the environmental conditions experienced by their parents, a phenomenon called parental effects or transgenerational plasticity. However, whether such effects are just passive responses or represent a special type of adaptive plasticity remains controversial because of a lack of solid tests of their adaptive significance. Here, we investigated transgenerational effects of different nutrient environments on the productivity, carbon storage and flowering phenology of the perennial plant Plantago lanceolata, and whether these effects are influenced by seasonal variation in the maternal environment. We found that maternal environments significantly affected the offspring phenotype, and that plants consistently produced more biomass and had greater root carbohydrate storage if grown under the same environmental conditions as experienced by their mothers. The observed transgenerational effects were independent of the season in which seeds had matured. We therefore conclude that transgenerational effects on biomass and carbon storage in P. lanceolata are adaptive regardless of the season of seed maturation.  相似文献   

15.
Urbanization causes major environmental changes globally, which can potentially homogenize biota across cities through the loss and gain of particular types of species. We examine whether urban environments consistently select for plants with particular traits and the implications of such changes on the functional composition of urban floras. We classified plant recorded in 11 cities around the globe as species that have either colonized (arrived and naturalized), persisted or been lost (local extirpation) following urbanization. We analyzed how 10 traits previously linked with plant responses to environmental conditions explained membership of these three groups, by comparing colonisers with persistent and extirpated plants through individual city‐level Bayesian models. Then, we used meta‐analysis to assess consistency of traits across urban areas. Finally, we explored several possible scenarios of functional change using these results. On average, urban colonizers had heavier seeds, unspecialised nutrient requirements, were taller and were annual species more often, especially when compared to locally extirpated plants. Common trends of functional change in urban plant communities include shifts towards taller and heavier‐seeded plants, and an increased prevalence of the short‐lived species, and plants without mutualistic nutritional strategies. Our results suggest that plant traits influence the species that succeed in urban environments worldwide. Different species use different ecological strategies to live in urban environments, as suggested by the importance of several traits that may appear as trait constellations. Plant height and seed mass were the only traits associated with both colonizer and extirpated plant status in urban environments. Based on our data, predicting colonization in urban environments may be easier than identifying extirpation‐prone plants; albeit some regional variation, colonization seems strongly driven by environmental conditions common to most cities (e.g. altered disturbance regimes), whereas extirpation may depend more on processes that vary across cities.  相似文献   

16.
Offspring size is one of the most important life‐history traits with consequences for both the ecology and evolution of most organisms. Surprisingly, formal estimates of selection on offspring size are rare, and the degree to which selection (particularly nonlinear selection) varies among environments remains poorly explored. We estimate linear and nonlinear selection on offspring size, module size, and senescence rate for a sessile marine invertebrate in the field under three different intensities of interspecific competition. The intensity of competition strongly modified the strength and form of selection acting on offspring size. We found evidence for differences in nonlinear selection across the three environments. Our results suggest that the fitness returns of a given offspring size depend simultaneously on their environmental context, and on the context of other offspring traits. Offspring size effects can be more pervasive with regards to their influence on the fitness returns of other traits than previously recognized, and we suggest that the evolution of offspring size cannot be understood in isolation from other traits. Overall, variability in the form and strength of selection on offspring size in nature may reduce the efficacy of selection on offspring size and maintain variation in this trait.  相似文献   

17.
  • Trade‐offs between reproduction, growth and survival arise from limited resource availability in plants. Environmental stress is expected to exacerbate these negative correlations, but no studies have evaluated variation in life‐history trade‐offs throughout species geographic ranges. Here we analyse the costs of growth and reproduction across the latitudinal range of the widespread herb Plantago coronopus in Europe.
  • We monitored the performance of thousands of individuals in 11 populations of P. coronopus, and tested whether the effects of growth and reproduction on a set of vital rates (growth, probability of survival, probability of reproduction and fecundity) varied with local precipitation and soil fertility. To account for variation in internal resources among individuals, we analysed trade‐offs correcting for differences in size.
  • Growth was negatively affected by previous growth and reproduction. We also found costs of growth and reproduction on survival, reproduction probability and fecundity, but only in populations with low soil fertility. Costs also increased with precipitation, possibly due to flooding‐related stress. In contrast, growth was positively correlated with subsequent survival, and there was a positive covariation in reproduction between consecutive years under certain environments, a potential strategy to exploit temporary benign conditions.
  • Overall, we found both negative and positive correlations among vital rates across P. coronopus geographic range. Trade‐offs predominated under stressful conditions, and positive correlations arose particularly between related traits like reproduction investment across years. By analysing multiple and diverse fitness components along stress gradients, we can better understand life‐history evolution across species’ ranges, and their responses to environmental change.
  相似文献   

18.
A negative, genetic correlation between the total number and average size of progeny is a classical life‐history trade‐off that can greatly affect the fitness of organisms in their natural environments. This trade‐off has been investigated for animals and for sexually reproducing plants. However, evidence for a genetical size‐number trade‐off for clonal progeny in plants is still scarce. This study provides experimental evidence for such a trade‐off in the stoloniferous herb Potentilla reptans, and it studies phenotypic plasticity to light availability for the involved traits. Genotypes of P. reptans were collected from distinctively different environments, clonally replicated and exposed to high light and to shaded conditions. We found a significant negative correlation between the average size and the total number of offspring across genotypes for both light environments. Shading reduced ramet numbers, but hardly affected average ramet size.  相似文献   

19.
The importance of parental contributions to offspring development and subsequent performance is self‐evident at a genomic level; however, parents can also affect offspring fitness by indirect genetic and environmental routes. The life history strategy that an individual adopts will be influenced by both genes and environment; and this may have important consequences for offspring. Recent research has linked telomere dynamics (i.e., telomere length and loss) in early life to future viability and longevity. Moreover, a number of studies have reported a heritable component to telomere length across a range of vertebrates, although the effects of other parental contribution pathways have been far less studied. Using wild Atlantic salmon with different parental life histories in an experimental split‐brood in vitro fertilization mating design and rearing the resulting families under standardized conditions, we show that there can be significant links between parental life history and offspring telomere length (studied at the embryo and fry stage). Maternal life history traits, in particular egg size, were most strongly related to offspring telomere length at the embryonic stage, but then became weaker through development. In contrast, paternal life history traits, such as the father's growth rate in early life, had a greater association in the later stages of offspring development. However, offspring telomere length was not significantly related to either maternal or paternal age at reproduction, nor to paternal sperm telomere length. This study demonstrates both the complexity and the importance of parental factors that can influence telomere length in early life.  相似文献   

20.
The evolution of adaptive phenotypic plasticity relies on the presence of cues that enable organisms to adjust their phenotype to match local conditions. Although mostly studied with respect to nonsocial cues, it is also possible that parents transmit information about the environment to their offspring. Such ‘anticipatory parental effects’ or ‘adaptive transgenerational plasticity’ can have important consequences for the dynamics and adaptive potential of populations in heterogeneous environments. Yet, it remains unknown how widespread this form of plasticity is. Using a meta‐analysis of experimental studies with a fully factorial design, we show that there is only weak evidence for higher offspring performance when parental and offspring environments are matched compared with when they are mismatched. Estimates of heterogeneity among studies suggest that effects, when they occur, are subtle. Study features, environmental context, life stage and trait categories all failed to explain significant amounts of variation in effect sizes. We discuss theoretical and methodological reasons for the limited evidence for anticipatory parental effects and suggest ways to improve our understanding of the prevalence of this form of plasticity in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号