首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
1. Pigment analysis by high‐performance liquid chromatography (HPLC) combined with data analysis using the CHEMTAX program has proven to be a fast and precise method for determining the abundance of phytoplankton groups in marine environments. To determine whether CHEMTAX is applicable also to freshwater phytoplankton, 20 different species of freshwater algae were cultured and their pigment/chlorophyll a (Chl a) ratios determined for exponential growth at three different light intensities and for stationary growth at one light intensity. 2. The different treatments had a relatively insignificant impact on the absolute values of the diagnostic pigment/Chl a ratios, with the exception of cyanobacteria and cryptophytes for which the zeaxanthin/Chl a and alloxanthin/Chl a ratios varied considerably. 3. The pigment ratios were tested on samples collected in six different eutrophic Danish lakes during two summer periods using the CHEMTAX program to calculate the biomass of the phytoplankton groups as Chl a. The CHEMTAX‐derived seasonal changes in Chl a biomass corresponded well with the volume of the microscopically determined phytoplankton groups. More phytoplankton groups were detected by the pigment method than by the microscopic method. 4. Applying the pigment ratios developed in this study, the pigment method can be used to determine the abundance of the individual phytoplankton groups, which are useful as biological water quality indicators when determining the ecological status of freshwater lakes.  相似文献   

2.
In vivo delayed fluorescence (DF) and HPLC/CHEMTAX pigment analyses were used to investigate seasonal and depth distributions of phytoplankton in a deep alpine mesotrophic lake, Mondsee (Austria). Using chl a equivalents, we determined significant relationships with both approaches. Community structure derived from pigment ratios of homogenous samples was compared with microscopic estimations using biovolume conversion factors. An advantage of the HPLC/CHEMTAX method was that it gave good discrimination among phytoplankton groups when based on a pigment ratio matrix derived from multiple regression analysis. When a single algal group was dominant, such as epilimnetic diatoms or hypolimnetic cyanobacteria in the deep chl maxima, HPLC/CHEMTAX results were significantly correlated with microscopic estimations (diatoms: r = 0.93; cyanobacteria: r = 0.94). Changes in the composition of photosynthetically active pigments were investigated with DF and benefited from excitation spectra that considered all light‐harvesting pigments, which made it possible to assess the enhancement of accessory photosynthetically active pigments relative to active chl a (chl aDF672). Changes in similarity index, based on normalized DF spectra, confirmed compositional shifts observed by microscopy. At chosen wavelengths of DF spectra, 534 and 586 nm, we generally observed a significantly inverse relationship between normalized DF intensities and temperature and light along both seasonal and depth gradients. The relative increase in photosynthetically active pigments other than chl aDF672 under low light and temperature was caused by an increasing dominance of diatoms and/or phycobilin‐rich cyanobacteria and Cryptophyta. DF spectra provided a more accurate picture of community pigments acclimated to light and temperature conditions than the β‐carotene:chl a ratio derived from HPLC.  相似文献   

3.
Phytoplankton pigments and community composition in Lake Tanganyika   总被引:3,自引:0,他引:3  
1. A 2‐year (2002–2003) survey of chlorophyll and carotenoid pigments is reported for two off‐shore stations of Lake Tanganyika, Kigoma (Tanzania) and Mpulungu (Zambia), and from three cruises between those sites. Chlorophyll a concentrations were low (0.3–3.4 mg m?3) and average chlorophyll a integrated through the 100 m water column were similar for both stations and years (36.4–41.3 mg m?2). Most pigments were located in the 0–60 m layer and decreased sharply downward. Chlorophyll a degradation products (phaeophytins and phaeophorbides) were detected at 100 m depth, whereas carotenoids became undetectable. Temporal and seasonal variation of the vertical distribution of pigments was high. 2. The biomass of phytoplankton groups was calculated from marker pigment concentrations over the 0–100 m water column using the CHEMTAX software. On average for the study period, chlorophytes dominated in the northern station, followed by cyanobacteria T1 (type 1, or Synechococcus pigment type), whereas cyanobacteria T1 dominated in the south. Cyanobacteria T2 (type 2, containing echinenone), presumably corresponding to filamentous taxa, were detected in the rainy season. Diatoms (and chrysophytes) developed better in the dry season conditions, with a deep mixed layer and increased nutrient availability. Very large variation in the vertical distribution of algal groups was observed. 3. Our observations on phytoplankton composition are broadly consistent with those from previous studies. Our pigment data provide evidence for the lake‐wide importance of picocyanobacteria and high interannual variation and spatial heterogeneity of phytoplankton in Lake Tanganyika, which may render difficult assessment of long‐term changes in phytoplankton driven by climate change.  相似文献   

4.
An HPLC analysis of the summer phytoplankton assemblage in Lake Baikal   总被引:5,自引:0,他引:5  
1. The enormous size and spatial heterogeneity of Lake Baikal require rapid methods for large sample sets. We therefore tested the applicability of a novel, high‐performance liquid chromatography (HPLC)‐based, combination of methods for analysing phytoplankton. In July 2001, samples were collected in a transect across the lake at various depths down to 30 m. Phytoplankton (>3 μm) and autotrophic picoplankton (APP) were counted under light and epifluorescence microscopes, respectively. Pigments were analysed with HPLC. 2. The pigment data allowed the contributions of the dominant phytoplankton groups to the total chlorophyll a (Chl a) in the lake to be estimated by multiple linear regression and by the CHEMTAX matrix factorisation program. Three marker pigments, fucoxanthin, lutein and zeaxanthin, were shown to be useful indicators of the abundance and spatial distribution of certain phytoplankton groups. The relative contributions of the various phytoplankton groups to the total Chl a in the lake determined using these marker pigments were similar, but not identical, to those determined by cell counts. 3. Pigment analyses of isolated strains from Lake Baikal and some European lakes confirmed that phycoerythrin‐containing Cyanobacteria with very high amounts of zeaxanthin were responsible for the low Chl a/zeaxanthin ratios of the water samples. A picoplanktonic species of Eustigmatophyceae was isolated from the lake. Its high violaxanthin content, responsible for very low Chl a/violaxanthin ratios of some water samples, can be used to estimate the contribution of this group to total Chl a.  相似文献   

5.
1. Pigment analyses by high performance liquid chromatography (HPLC) are commonly used for determining algal groups in marine and estuarine areas but are underdeveloped in freshwaters. In this study, 15 characteristic pelagic algal species (representing five algal groups) of oligo‐ / mesotrophic lakes were cultured and pigment / Chl a ratios determined at three light intensities. 2. With the exception of cyanophytes, light treatment had little effect on pigment / Chl a ratios. This justifies the use of the same pigment / Chl a ratios during seasonal studies where light conditions may change. 3. The determined pigment / Chl a ratios were tested on seasonal samples from five oligo‐ / mesotrophic lakes and three streams using CHEMTAX software. Pigment ratios of both pelagic and benthic algal communities from the lakes and streams were analysed to determine whether the pelagic algae‐based ratios can be used for benthic algal communities. 4. HPLC combined with CHEMTAX was useful for identifying freshwater phytoplankton classes and for quantifying the abundance of phytoplankton groups. However, although correlations were significant for six of seven phytoplankton classes studied, they were weak and varied with season. 5. HPLC was valid for quantifying benthic diatom groups in stream samples, whereas for lakes more benthic algal groups were recorded with HPLC than with microscopy and correlations between the two methods were not significant. 6. The use of both HPLC and microscopy is recommended as a cost‐efficient method for analysing many samples. It is crucial, however, that the CHEMTAX software is calibrated with the correct information, and the user is aware of the limitations.  相似文献   

6.
Nagy  G.J.  Gómez-Erache  M.  López  C.H.  Perdomo  A.C. 《Hydrobiologia》2002,(1):125-139
In this paper we discuss nutrient dynamics and the effects of eutrophication in the Rio de la Plata River Estuary System since 1980. The tidal river was characterized by high suspended particulate matter (SPM), nutrients, and N:P ratio (>25), moderate chlorophyll a values, an inverse relationship between SPM and phosphate, and cianobacteria blooms. Seaward of the salinity front, where both SPM and nutrient concentrations are lower and chlorophyll a values greater, the net ecosystem metabolism is positive. Permanent stratification controls nutrient, organic matter and oxygen dynamics leading to biological stress and hypoxia below the halocline. Non conservative behavior of nitrogen in the estuary leads to a low N:P ratio (<3) because of both phytoplankton assimilation of nitrogen and denitrification, and benthic flux of phosphate. Periodic nuisance and toxic blooms occur at high salinities along the Uruguayan coast (Canal Oriental). Over the recent decades, changes in freshwater inflow, point and non-point nutrient load, and stratification, triggered by ENSO events, seem to have controlled the ecosystem metabolism, nutrient-oxygen dynamics, and the development of harmful blooms. The assessment of the regional and overall ranking of eutrophic conditions determines that the system is moderately eutrophied. Nevertheless, increasing trends in quantity of freshwater and nutrient loads, and the low potential to dilute and flush nutrients, suggest that the Rio de la Plata, in particular the Canal Oriental is prone to worsening eutrophication conditions like oxygen stress and harmful blooms.  相似文献   

7.
Diagnostic photopigment analysis is a useful tool for determining the presence and relative abundance of algal groups in natural phytoplankton assemblages. This approach is especially useful when a genus has a unique photopigment composition. The toxic dinoflagellate Karenia brevis (Davis) G. Hansen & Moestrup comb. nov. shares the diagnostic pigment gyroxanthin‐diester with only a few other dinoflagellates and lacks peridinin, one of the major diagnostic pigments of most dinoflagellate species. In this study, measurements of gyroxanthin‐diester and other diagnostic pigments of K. brevis were incorporated into the initial pigment ratio matrix of the chemical taxonomy program (CHEMTAX) to resolve the relative contribution of K. brevis biomass in mixed estuarine phytoplankton assemblages from Florida and Galveston Bay, Texas. The phytoplankton community composition of the bloom in Galveston Bay was calculated based on cell enumerations and biovolumetric measurements in addition to chl a‐specific photopigment estimates of biomass (HPLC and CHEMTAX). The CHEMTAX and biovolume estimates of the phytoplankton community structure were not significantly different and suggest that the HPLC–CHEMTAX approach provides reasonable estimates of K. brevis biomass in natural assemblages. The gyroxanthin‐diester content per cell of K. brevis from Galveston Bay was significantly higher than in K. brevis collected from the west coast of Florida. This pigment‐based approach provides a useful tool for resolving spatiotemporal distributions of phytoplankton in the presence of K. brevis blooms, when an appropriate initial ratio matrix is applied.  相似文献   

8.
The seasonal variation of phytoplankton in an eutrophic tropical reservoir was evaluated through photosynthetic pigments analyzed by HPLC. The contributions of algal classes to total chlorophyll a (TChl-a) were estimated by two procedures. The first one used fixed marker pigment/chlorophyll a ratio available from culture studies of the major species of each class. In the second procedure, a matrix factorization program (CHEMTAX) was used to analyze the pigment data. The pigment data were compared with carbon biomass estimated from microscope analysis. A significant correlation between total chlorophyll a (measured by HPLC) and total biomass was obtained, indicating only a slight variation in the content of algal chlorophyll a when compared to its fluctuations in carbon biomass. The interpretation of pigment data with CHEMTAX resulted in a good agreement with biomass. Although displaying some differences, the general pattern of the phytoplankton community dynamics and the major shifts in composition, biomass and the cyanobacterial bloom were evidenced. In contrast, Chl-a biomass estimates from fixed Xan/Chl-a ratios presented poor agreement with microscope data and did not register the principal changes in phytoplankton. Our results also highlighted the needs of better understanding of the relationships between marker pigments, chlorophyll-a and algal biomass.  相似文献   

9.
Pigment-based chemotaxonomy and CHEMTAX software have proven to be a valuable phytoplankton monitoring tool in marine environments, but are yet underdeveloped to determine algal assemblages in freshwater ecosystems. The main objectives of this study were (1) to compare the results of direct microscopy and CHEMTAX in describing phytoplankton community composition dynamics in a large, shallow and eutrophic lake; (2) to analyze the efficiency of the pigment-based method to detect changes in phytoplankton seasonal dynamics and during rapid bloom periods; (3) to assess the suitability of specific marker pigments and available marker pigment:chlorophyll a ratios to follow seasonal changes in eutrophic freshwater environment. A 5-year (2009-2013) parallel phytoplankton assessment by direct microscopy and by CHEMTAX was conducted using published marker pigment:chlorophyll a ratios. Despite displaying some differences from microscopy results, the pigment-based method successfully described the overall pattern of phytoplankton community dynamics during seasonal cycle in a eutrophic lake. Good agreement between the methods was achieved for most phytoplankton groups - cyanobacteria, chlorophytes, diatoms and cryptophytes. The agreement was poor in case of chrysophytes and dinoflagellates. Our study shows clearly that published marker pigment:chlorophyll a ratios can be used to describe algal class abundances, but they need to be calibrated for specific freshwater environment. Broader use of this method would enable to expand monitoring networks and increase measurement frequencies of freshwater ecosystems to meet the goals of the Water Framework Directive.  相似文献   

10.
Cyanobacterial blooms are an increasing threat to water quality and global water security caused by the nutrient enrichment of freshwaters. There is also a broad consensus that blooms are increasing with global warming, but the impacts of other concomitant environmental changes, such as an increase in extreme rainfall events, may affect this response. One of the potential effects of high rainfall events on phytoplankton communities is greater loss of biomass through hydraulic flushing. Here we used a shallow lake mesocosm experiment to test the combined effects of: warming (ambient vs. +4°C increase), high rainfall (flushing) events (no events vs. seasonal events) and nutrient loading (eutrophic vs. hypertrophic) on total phytoplankton chlorophyll‐a and cyanobacterial abundance and composition. Our hypotheses were that: (a) total phytoplankton and cyanobacterial abundance would be higher in heated mesocosms; (b) the stimulatory effects of warming on cyanobacterial abundance would be enhanced in higher nutrient mesocosms, resulting in a synergistic interaction; (c) the recovery of biomass from flushing induced losses would be quicker in heated and nutrient‐enriched treatments, and during the growing season. The results supported the first and, in part, the third hypotheses: total phytoplankton and cyanobacterial abundance increased in heated mesocosms with an increase in common bloom‐forming taxa—Microcystis spp. and Dolichospermum spp. Recovery from flushing was slowest in the winter, but unaffected by warming or higher nutrient loading. Contrary to the second hypothesis, an antagonistic interaction between warming and nutrient enrichment was detected for both cyanobacteria and chlorophyll‐a demonstrating that ecological surprises can occur, dependent on the environmental context. While this study highlights the clear need to mitigate against global warming, oversimplification of global change effects on cyanobacteria should be avoided; stressor gradients and seasonal effects should be considered as important factors shaping the response.  相似文献   

11.
12.
The lipophilic photosynthetic pigments in Limnothrix redekei, Planktothrix agardhii (cyanobacteria), Stephanodiscus minutulus, Synedra acus (diatoms), Scenedesmus acuminatus, and Scenedesmus armatus (chlorophycean) all isolated from an eutrophic lake were quantitatively determined by HPLC. The algae were grown semi-continuously under nutrient sufficient conditions at 20°C at a 12/12 h light/dark cycle with constant irradiance or with simulated natural light fluctuations as well as at a 6/18 h light/dark cycle with constant irradiance, all at the same daily light exposure. The zeaxanthin and the myxoxanthophyll contents of cyanobacteria were not influenced by fluctuating light, a short photoperiod or a different sampling time. The chlorophyll b/a ratio, the lutein/chlorophyll a ratio, and the neoxanthin content of chlorophycean as well as the chlorophyll c/a and the fucoxanthin/chlorophyll a ratio of diatoms were only slightly influenced by these factors. Therefore in some cases marker pigment contents and in other cases marker pigment/chlorophyll a ratios may be more useful for quantifying the relative importance of different taxonomic groups in natural phytoplankton. Simulated natural light fluctuations or the length of the photoperiod only slightly influenced the pigment content or the marker pigment/chlorophyll a ratio.  相似文献   

13.
1. A 2‐year study was carried out on the roles of nutrients and fish in determining the plankton communities of a shallow lake in north‐west Spain. Outcomes were different each year depending on the initial conditions, especially of macrophyte biomass. In 1998 estimated initial ‘per cent water volume inhabited’ (PVI) by submerged macrophytes was about 35%. Phytoplankton biomass estimated as chlorophyll a was strongly controlled by fish, whereas effects of nutrient enrichment were not significant. In 1999 estimated PVI was 80%, no fish effect was observed on phytoplankton biomass, but nutrients had significant effects. Water temperatures were higher in 1998 than in 1999. 2. In the 1998 experiment, cladoceran populations were controlled by fish and cyanobacteria were the dominant phytoplankton group. There were no differences between effects of low (4 g fresh mass m?2) and high (20 g fresh mass m?2) fish density on total zooplankton biomass, but zooplankton biomass was higher in the absence of fish. With the high plant density in 1999, fish failed to control any group of the zooplankton community. 3. Total biovolume of phytoplankton strongly decreased with increased nutrient concentrations in 1998, although chlorophyll a concentrations did not significantly change. At higher nutrient concentrations, flagellate algae became more abundant with likely growth rates that could have overcompensated cladoceran feeding rates. This change in phytoplankton community composition may have been because of increases in the DIN : SRP ratio. Both chlorophyll a concentration and total phytoplankton biovolume increased significantly with nutrients in the 1999 experiment. 4. A strong decline of submerged macrophytes was observed in both years as nutrients increased, resulting in shading by periphyton. This shading effect could account for the plant decline despite lower water turbidity at the very high nutrient levels in 1998.  相似文献   

14.
1. Mesocosm experiments were carried out to examine the relative importance of top down (fish predation) and bottom up (nutrient addition) controls on phytoplankton abundance in a small shallow lake, Little Mere, U.K., in 1998 and 1999. These experiments were part of a series at six sites across Europe. 2. In the 1998 experiment, top‐down processes (through grazing of large Cladocera) were important in determining phytoplankton biomass. The lack of plant refugia for zooplankton was probably important in causing an increasing chlorophyll a concentration even at intermediate fish density. Little Mere normally has abundant macrophytes but they failed to develop substantially during both years. Bottom‐up control was not important in 1998, most probably because of high background nutrient concentrations, as a result of nutrient release from the sediments. 3. In 1999 neither top‐down nor bottom‐up processes were significant in determining phytoplankton biomass. Large cladoceran grazers were absent even in the fish‐free enclosures, probably because dominance of cyanobacteria and high phytoplankton biomass made feeding conditions unsuitable. As in 1998, bottom‐up control of phytoplankton was not important, owing to background nutrient concentrations that were even higher in 1999 than in 1998, perhaps because of the warmer, sunnier weather. 4. The differing outcomes of the two experiments in the same lake with similar experimental designs highlight the importance of starting conditions. These conditions in turn depended on overall weather conditions prior to the experiments.  相似文献   

15.
The New River Estuary, NC, is a nutrient-sensitive, eutrophic water body that is prone to harmful algal blooms. High annual loading from the watershed of varying nutrient forms, including inorganic phosphorus and inorganic and organic nitrogen, may be linked to the persistence of algal blooms in the estuary. In order to evaluate phytoplankton response to nutrient inputs, a series of in situ nutrient addition experiments were carried out during June 2010 to July 2011 on water from an estuarine site known to support algal blooms. Estuarine water was enriched with nutrients consisting of individual and combined sources of dissolved inorganic nitrogen, orthophosphate, urea, and a natural dissolved organic nitrogen (DON) addition derived from upstream New River water. The combined inorganic N and P addition most frequently stimulated phytoplankton biomass production as total chlorophyll a. The responses of diagnostic (of major algal groups) photopigments were also evaluated. Significant increases in peridinin (dinoflagellates), chlorophyll b (chlorophytes), and myxoxanthophyll (cyanobacteria) were most frequently promoted by additions containing riverine DON. Significant increases in zeaxanthin (cyanobacteria) were more frequently promoted by inorganic nitrogen additions, while increases in fucoxanthin (diatoms) and alloxanthin (cryptophytes) were not promoted consistently by any one nutrient treatment. Evaluating the impact of varying nutrient forms on phytoplankton community dynamics is necessary in order to develop strategies to avoid long-term changes in community structure and larger-scale changes in ecosystem condition.  相似文献   

16.
The western Antarctic Peninsula (WAP) is a bellwether of global climate change and natural laboratory for identifying interactions between climate and ecosystems. The Palmer Long‐Term Ecological Research (LTER) project has collected data on key ecological and environmental processes along the WAP since 1993. To better understand how key ecological parameters are changing across space and time, we developed a novel seascape classification approach based on in situ temperature, salinity, chlorophyll a, nitrate + nitrite, phosphate, and silicate. We anticipate that this approach will be broadly applicable to other geographical areas. Through the application of self‐organizing maps (SOMs), we identified eight recurrent seascape units (SUs) in these data. These SUs have strong fidelity to known regional water masses but with an additional layer of biogeochemical detail, allowing us to identify multiple distinct nutrient profiles in several water masses. To identify the temporal and spatial distribution of these SUs, we mapped them across the Palmer LTER sampling grid via objective mapping of the original parameters. Analysis of the abundance and distribution of SUs since 1993 suggests two year types characterized by the partitioning of chlorophyll a into SUs with different spatial characteristics. By developing generalized linear models for correlated, time‐lagged external drivers, we conclude that early spring sea ice conditions exert a strong influence on the distribution of chlorophyll a and nutrients along the WAP, but not necessarily the total chlorophyll a inventory. Because the distribution and density of phytoplankton biomass can have an impact on biomass transfer to the upper trophic levels, these results highlight anticipated links between the WAP marine ecosystem and climate.  相似文献   

17.
Samples of the phytoplankton in a freshwater lake, Lake Liddell, New South Wales (Lat: 32° 22 S, Long. 150° 1 E) were collected every 4 weeks between October 1987 and November 1988. Chlorophyll a concentrations ranged from 1.8 g 1–1 to 9.1 g 1–1 and were positively correlated with the following nutrient parameters: total and nett mass additions of nitrate/nitrite-N and total-N, total additions of Kjeldahl-N, and nett mass addition N-P ratios. There was no correlation between lake nutrient concentrations and chlorophyll a. Factors other than nutrient concentrations appeared to be effecting chlorophyll a concentrations as summer levels were low despite nutrient concentrations being at a maximum. In spring and summer the phytoplankton was dominated by chlorophytes, with dinoflagellates and diatoms most abundant in autumn. During winter cyanobacteria were the most abundant. The relative abundance of chlorophytes was positively correlated with in lake nitrate/nitrite-N concentrations whereas the relative abundance of cyanobacteria was negatively correlated with this parameter. Based on chlorophyll a concentrations and the phytoplankton flora Lake Liddell can be classified as mesotrophic.  相似文献   

18.
The St. Johns River, a 300‐mile riverine and estuarine system located along the north‐eastern coastline of Florida, has undergone extensive eutrophication through point and nonpoint source nutrient inputs. Moreover, recent reports of sudden fish kills and a high incidence of fish with lesions suggest the potential for harmful algal blooms. As part of a NOAA‐funded project involving the characterization of water quality parameters in relation to water inflows and nutrient inputs and the development of species‐specific markers/probes for instrumental‐based monitoring efforts, we used primer‐based multivariate analyses to examine the relationship between abiotic variables and both total and phylogenetic‐group chlorophyll a concentrations (derived from photopigments and ChemTax matrix factorization of diagnostic carotenoids) during 2001. Seven sampling sites (identified through principle components ordination of physical/chemical parameters as ranging from oligo‐ to mesohaline) were sampled intensively over 2‐week periods on a seasonal basis. Chlorophyll a concentrations typically ranged from 5 to 35 µg/L with the greatest concentrations occurring at the oligohaline sites. Phytoplankton assemblages were dominated by diatoms, cryptophytes, and cyanobacteria, and together typically comprised up to 90% of the total chlorophyll a. Temporal variability in phytoplankton assemblages followed seasonal trends impacted by meteorological and hydrological forcing. Spatial variability in phylogenetic‐group abundance (illustrated through multidimensional scalar ordination of sample dissimilarity) was dramatic and associated with differences in abiotic variables along the estuarine gradient.  相似文献   

19.
Algal bloom phenomenon was defined as “the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton”, yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three‐Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from –0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
1. Filamentous green algae (FGA) may represent an alternative state in high‐nutrient shallow temperate lakes. Furthermore, a clear water state is sometimes associated with the dominance of FGA; however, the mechanisms involved remain uncertain. 2. We hypothesised that FGA may promote a clear water state by directly suppressing phytoplankton growth, mostly via the release of allelochemicals, and that this interaction may be affected by temperature. 3. We examined the relationships between FGA, phytoplanktonic chlorophyll a concentrations and zooplankton in a series of mesocosms (2.8 m3) mimicking enriched shallow ponds now and in a future warmer climate (0 and c. 5 °C above ambient temperatures). We then tested the potential allelopathic effects of FGA (Cladophora sp. and Spirogyra sp.) on phytoplankton using several short‐term microcosms and laboratory experiments. 4. Mesocosms with FGA evidenced lower phytoplanktonic chlorophyll a concentrations than those without. Zooplankton and zooplankton : phytoplankton biomass ratios did not differ between mesocosms with and without FGA, suggesting that grazing was not responsible for the negative effects on phytoplanktonic biomass (chlorophyll a). 5. Our field microcosm experiments demonstrated that FGA strongly suppressed the growth of natural phytoplankton at non‐limiting nutrient conditions and regardless of phytoplankton initial concentrations or micronutrients addition. Furthermore, we found that the negative effect of FGA on phytoplankton growth increased up to 49% under high incubation temperatures. The experiment performed using FGA filtrates confirmed that the inhibitory effect of FGA on phytoplankton may be attributed to allelochemicals. 6. Our results suggest that FGA control of phytoplankton growth may be an important mechanism for stabilising clear water in shallow temperate lakes dominated by FGA and that FGA may play a larger role when lakes get warmer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号