首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A current key issue in ecology is the role of spatial effects on population and community dynamics. In this paper, we test several hypotheses related to spatial structures and coexistence of epiphytic tropical orchid species with special emphasis on the endemic species Broughtonia cubensis. More specifically, we explored the spatial structure of orchid–host plant communities at three different levels of organization (occupied vs. nonoccupied host trees, trees with B. cubensis vs. other orchids, and reproductive vs. nonreproductive B. cubensis plants). We mapped all potential host trees and orchids at three 20 × 20 m plots and applied techniques of spatial point pattern analysis such as mark connection and mark correlation functions to evaluate departures from randomized communities. We found spatial aggregation of trees with epiphytic orchids and segregation between trees with and without epiphytic orchids, and that there was an intraspecific spatial aggregation of B. cubensis in relation to the other seven epiphytic orchid species. Furthermore, we found spatial aggregation of reproductive B. cubensis individuals and segregation between reproductive and nonreproductive individuals on their phorophytes. Thus, orchid–host plant communities show hierarchical spatial structuring with aggregation and segregation at different levels of organization. Our results point to an enhancement of local species in the coexistence of tropical epiphytic orchid communities, by reducing competition through niche differentiation.  相似文献   

2.
Summary Abundance patterns during 6–7 years and orchid visitation were determined for 51 species of the 57 local euglossine bees. Male bees were counted at 3 chemical attractants presented in the same manner each month. Sites were separated by 75 km but included wet Atlantic forest at 500 m elevation, moist forest at 180 m near Barro Colorado Island, and cloud forest at 900 m near the Pacific ocean. 1. From 15 to 30 euglossine species of 4 genera were active in each month and site; monthly species number and general bee abundance were positively correlated. Many species had 3 annual abundance peaks (range 1–4) and were active throughout the year, but peak annual abundances rarely occurred during late wet or early dry seasons. In contrast, Eufriesea generally were present as adults only 1–2 months in a year. 2. Euglossine populations were exceptionally stable. Species at each site were more stable than any known insect population, and stability and abundance were positively associated. However, year-to-year population stability and the degree of seasonality were not correlated. Among the three sites, the more diverse (species rich) bee assemblages displayed lower stability; these were the wetter and upland sites. 3. The most abundant bees visited more orchid species. Eg. and El. each visited and average of 4 orchid species (range 0–13); Ex. and Ef. visited 0–3. Stable populations did not visit more or fewer orchid species than did unstable populations. 4. Less than 68% of species at each site visited orchid flowers; less than a few dozen of the 100–800 bees counted in a day carried orchid pollinaria. Over 20% of the euglossine species never were seen with pollinaria at any site and probably seldom visit orchids in central Panama. 5. Most bee species visited 1 or no fragrance orchids in a given habitat. Orchids tended to utilize common pollinators that seldom included more than 1 species, and they utilized stable or unstable, seasonal or aseasonal bees. However, the most stable and abundant bee, Eg. imperialis, rarely pollinated orchids; fewer than 10 of ca. 20000 bees carried pollinaria. 6. Orchids may interact primarily with discrete seasonal bee population peaks-probably the emerging adults. Although specialized orchid preferences are implicated for species that visit few or no local orchids but pollinate other species and carry pollinaria in other areas, euglossine bees do not need orchids to survive or reproduce.  相似文献   

3.
  • Most plants that inhabit ant‐gardens (AGs) are cultivated by the ants. Some orchids occur in AGs; however, it is not known whether their seeds are dispersed by AG ants because most orchid seeds are tiny and dispersed by wind.
  • We performed in situ seed removal experiments, in which we simultaneously provided Azteca gnava ants with seeds of three AG orchid species and three other AG epiphyte species (Bromeliaceae, Cactaceae and Gesneriaceae), as well as the non‐AG orchid Catasetum integerrimum.
  • The seeds most removed were those of the bromeliad Aechmea tillandsioides and the gesneriad Codonanthe uleana, while seeds of AG orchids Coryanthes picturata, Epidendrum flexuosum and Epidendrum pachyrachis were less removed. The non‐AG orchid was not removed. Removal values were positively correlated with the frequency of the AG epiphytes in the AGs, and seeds of AG orchids were larger than those of non‐AG orchids, which should favour myrmecochory.
  • Our data show that Azt. gnava ants discriminate and preferentially remove seeds of the AG epiphytes. We report for the first time the removal of AG orchid seeds by AG ants in Neotropical AGs.
  相似文献   

4.
Non‐rewarding orchids rely on various ruses to attract their pollinators. One of the most common is for them to resemble flowers sought by insects as food sources. This can range from generalized food deception to the mimicry of specific sympatric food plants. We investigated the basis of pollinator deception in the European food‐deceptive orchid Traunsteinera globosa, which has unusually compact flowerheads resembling those of sympatric rewarding species of Knautia and Scabiosa (Dipsacaceae), and Valeriana (Caprifoliaceae). Visual signals of T. globosa are similar in both fly and bee vision models to those of the sympatric food plants used in the choice experiments, but scent signals are divergent. Field experiments conducted in Austria and the Czech Republic showed that both naive and experienced (with respect to visitation of T. globosa) insect species approached the orchids at the same rate as food plants, but direct contact with orchid flowers was taxon specific. Flies were most easily duped into probing the orchid, and, in doing so, frequently received and deposited pollinaria, whereas most bees and butterflies avoided landing on orchid flowers. We conclude that T. globosa is a mimic of a guild of fly‐pollinated plants, but the ecological dependence of the orchid on its models remains to be fully tested. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 269–294.  相似文献   

5.
China has over 1,200 species of native orchids in nearly 173 genera. About one fourth of native species are of horticultural merit. Some species are of Chinese medicinal value. In fact, the demand on orchid species with high Chinese medicinal values such as Gastrodia elata, Dendrobium offcinale, along with demands on species of cultural importance, such as those in the genus of Cymbidium, is a major factor causing wild populations to diminish and in some cases, drive wild populations to the brink of extinction. These market demands have also driven studies on the role of mycorrhizal fungi in orchid seed germination, seedling and adult growth, and reproduction. Most of these mycorrhizal studies of Chinese orchids, however, are published in Chinese, some in medical journals, and thus overlooked by the mainstream orchid mycorrhizal publications. Yet some of these studies contained interesting discoveries on the nature of the mycorrhizal relationships between orchids and fungi. We present a review of some of these neglected publications. The most important discovery comes from the mycorrhizal studies on G. elata, in which the researchers concluded that those fungi species required to stimulate seed germination are different from those that facilitate the growth of G. elata beyond seedling stages. In addition, presence of the mycorrhizal fungi associated with vegetative growth of post-seedling G. elata hindered the germination of seeds. These phenomena were unreported prior to these studies. Furthermore, orchid mycorrhizal studies in China differ from the mainstream orchid studies in that many epiphytic species (in the genus of Dendrobium, as medicinal herbs) were investigated as well as terrestrial orchids (mostly in the genus Cymbidium, as traditional horticultural species). The different responses between epiphytic and terrestrial orchid seeds to fungi derived from roots suggest that epiphytic orchids may have a more general mycorrhizal relationship with fungi than do terrestrial orchid species during the seed germination stage. To date, orchid mycorrhizal research in China has had a strongly commercial purpose. We suggest that this continuing research on orchid mycorrhizal relationships are a solid foundation for further research that includes more rare and endangered taxa, and more in-situ studies to assist conservation and restoration of the endangered orchids. Knowledge on the identities and roles of mycorrhizal fungi of orchids holds one of the keys to successful restoration and sustainable use of Chinese orchids.  相似文献   

6.
Orchidaceae is one of the most species-rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and their life cycle. The level of specificity of the association between orchid species and fungi can be related to the number of co-occurring orchid species. To investigate orchid mycorrhizal associations in adult-photosynthetic orchids, 16 Mediterranean orchid species belonging to 4 genera (Anacamptis, Ophrys, Orchis, and Serapias) at 11 different sites were subjected to DNA-based analysis. Eighteen operational taxonomic units representing two fungal families, Tulasnellaceae and Ceratobasidiaceae, were identified. All examined orchid species associated with different mycorrhizal fungi. Interestingly, there was a positive correlation between number of orchid species and number of mycorrhizal. Monospecific populations showed a lower number of fungi, while sympatric populations had a higher number of mycorrhizal fungi. Our results showed that Mediterranean orchid species associated with a higher number of mycorrhizal fungi confirming as photosynthetic orchids are typically generalists toward mycorrhizal fungi. Thus, photosynthetic orchids exhibit low specificity for fungal symbionts showing the potential for opportunistic associations with diverse fungi reducing competition for nutrient. We suggest that these characteristics could confer symbiotic assurance particularly in habitat with resource limitations or prone to stressful conditions.  相似文献   

7.
The psilid fly Chyliza vittata is a leaf miner or stem borer of some orchids in Europe and Japan but few studies on its behavior have been published. Here I describe aspects of the reproductive behavior of the species infesting Gastrodia elata, a leafless orchid. Male mate‐seeking behavior occurred on flowering G. elata plants that were attractive to egg‐laden females, and indeed copulation was observed. Although two or more males were commonly seen on an orchid stem without interaction, males occasionally reacted aggressively toward other males. Females laid eggs on the flowers, floral buds or bracts as well as into the flowers, using their “ovipositor”. Almost all orchids studied eventually produced mature capsules; therefore G. elata seemed to suffer limited damage from infestation by C. vittata. Information regarding a natural enemy and pupation habits is also provided.  相似文献   

8.
The geographical distribution, population structure and pollination ecology are key aspects in the conservation and management of rare orchids. Here, we address these aspects and the main threats affecting the endangered Cuban orchid Broughtonia cubensis. This rewardless orchid is self‐compatible, but pollinator dependent. However, seed production can be negatively affected by insect‐mediated selfing. Three species of small bee (genera Ceratina and Lasioglossum) act as pollinators. As in the case of other nectarless orchids, we detected two species of plant producing large amounts of nectar in the area, the floral morphology of which closely resembles that of B. cubensis. The simultaneous flowering of these species could positively affect the reproductive success of B. cubensis. Nonetheless, the fitness of this orchid in natural conditions is low, possibly related to strong pollen limitation. To the problems arising from reduced fitness is added the fact that its historical distribution range has been greatly reduced in recent years. Throughout this study, we have detected dramatic reductions in the population sizes, in some cases as a result of human plundering, but also as a consequence of hurricanes. Based on the results of this study, we propose some guidelines to manage and conserve this orchid. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 345–357.  相似文献   

9.
Orchids typically depend on fungi for establishment from seeds, forming mycorrhizal associations with basidiomycete fungal partners in the polyphyletic group rhizoctonia from early stages of germination, sometimes with very high specificity. This has raised important questions about the roles of plant and fungal phylogenetics, and their habitat preferences, in controlling which fungi associate with which plants. In this issue of Molecular Ecology, Martos et al. (2012) report the largest network analysis to date for orchids and their mycorrhizal fungi, sampling a total of over 450 plants from nearly half the 150 tropical orchid species on Reunion Island, encompassing its main terrestrial and epiphytic orchid genera. The authors found a total of 95 operational taxonomic units of mycorrhizal fungi and investigated the architecture and nestedness of their bipartite networks with 73 orchid species. The most striking finding was a major ecological barrier between above‐ and belowground mycorrhizal fungal networks, despite both epiphytic and terrestrial orchids often associating with closely related taxa across all three major lineages of rhizoctonia fungi. The fungal partnerships of the epiphytes and terrestrial species involved a diversity of fungal taxa in a modular network architecture, with only about one in ten mycorrhizal fungi partnering orchids in both groups. In contrast, plant and fungal phylogenetics had weak or no effects on the network. This highlights the power of recently developed ecological network analyses to give new insights into controls on plant–fungal symbioses and raises exciting new hypotheses about the differences in properties and functioning of mycorrhiza in epiphytic and terrestrial orchids.  相似文献   

10.
The Western Prairie Fringed Orchid (Platanthera praeclara) is a threatened species found on the Sheyenne National Grassland (SNG) in southeast North Dakota, USA. The SNG is subject to management for multiple uses including biodiversity conservation, livestock grazing and recreation. Therefore, there is a need for the development of indicators of suitable orchid habitat. The orchids are continuously monitored, but understanding of the relationship between landscape properties and orchid locations is limited. In this study data that characterize topography, moisture, and groundwater were used to construct indicators of landscape suitability and an overall Habitat Suitability Index (HSI) for the orchid. A LiDAR-derived DEM and groundwater well observations were used to develop landscape indicators. The Topographic Wetness Index (TWI: a measure of moisture on the landscape), the Topographic Position Index (TPI: a measure of position on the landscape), and the distance to groundwater (DTG: a measure of the distance from the land surface to the groundwater surface) provided the best set of indicators of orchid habitat. Point-based field observations of orchid occurrence were used to develop Orchid Suitability Metrics (OSMs) that identified the range of indicator values most strongly associated with orchids. These OSMs were used to define year by year suitability zones for each indicator that were combined to create the HSI. Comparison of orchid locations with groundwater elevations showed that orchids occurred on average 0.98 ± 0.39 (2σ) m above the water table. TWI and TPI demonstrated that orchids occur near flow paths and areas of lower elevation than their surroundings. HSI values of 0.67 and above were associated with 89.8% of all orchid observations used in the analysis. The landscape indicators, OSM concept and HSI could be generally applied to monitoring and conservation management of orchid habitat and the concept may be applicable to other valued species with similar niche properties.  相似文献   

11.
The study of congruency between phylogenies of interacting species can provide a powerful approach for understanding the evolutionary history of symbiotic associations. Orchid mycorrhizal fungi can survive independently of orchids making cospeciation unlikely, leading us to predict that any congruence would arise from host-switches to closely related fungal species. The Australasian orchid subtribe Drakaeinae is an iconic group of sexually deceptive orchids that consists of approximately 66 species. In this study, we investigated the evolutionary relationships between representatives of all six Drakaeinae orchid genera (39 species) and their mycorrhizal fungi. We used an exome capture dataset to generate the first well-resolved phylogeny of the Drakaeinae genera. A total of 10 closely related Tulasnella Operational Taxonomic Units (OTUs) and previously described species were associated with the Drakaeinae orchids. Three of them were shared among orchid genera, with each genus associating with 1–6 Tulasnella lineages. Cophylogenetic analyses show Drakaeinae orchids and their Tulasnella associates exhibit significant congruence (p < 0.001) in the topology of their phylogenetic trees. An event-based method also revealed significant congruence in Drakaeinae–Tulasnella relationships, with duplications (35), losses (25), and failure to diverge (9) the most frequent events, with minimal evidence for cospeciation (1) and host-switches (2). The high number of duplications suggests that the orchids speciate independently from the fungi, and the fungal species association of the ancestral orchid species is typically maintained in the daughter species. For the Drakaeinae–Tulasnella interaction, a pattern of phylogenetic niche conservatism rather than coevolution likely explains the observed phylogenetic congruency in orchid and fungal phylogenies. Given that many orchid genera are characterized by sharing of fungal species between closely related orchid species, we predict that these findings may apply to a wide range of orchid lineages.  相似文献   

12.
Documenting species interactions is a time consuming enterprise, in particular for rare interaction events and interactions taking place at night. Pollinators foraging on orchids have traditionally been monitored by discovering pollen vectors on collected insects, recording traces left by moths on the orchid, direct observations and recently by continuous video monitoring. Direct observations in the wild of orchids with low visitation rates is time demanding. In the present study I monitored greater butterfly‐orchids (Platanthera chlorantha), by using a event triggered video monitoring system. A total of 23 nights of monitoring were conducted, whereas only 6 nights had visits by one moth species, namely the pine hawk‐moth (Hyloicus pinastri). The total numbers of pine hawk‐moths registered were 18. In addition to species identification, the video recordings also enabled detection of pollinaria on the pine hawk‐moths. Most of the pine hawk‐moth visits took place around midnight. The visit lasted on average for 38.0 sec and the average number of flowers visited was 9.6. In future studies, this video system could give more details on interactions between orchids and insects and even link it to environmental factors (e.g. varying weather conditions).  相似文献   

13.
14.
Foliar surfaces of nine pleurothallid orchids (Cryptophoranthus lepidotus L. O. Wms., Octomeria sp., Pleurothallis pidax Luer, P. poeppigii Lindl., P. revoluta (Ruiz & Pav.) Garay, Restrepiella ophiocephala (Lindl.) Garay & Dunsterv., Restrepia muscifera Rchb. f. ex Lindl., Scaphosepalum rapax Luer, Stelis endresii Rchb. f.), four nonpleurothallid orchids (Cyrtopodium punctatum (L.) Lindl., Encyclia cochleata (L.) Lemee, E. tampensis (Lindl.) Small, Paphiope-dilum hybrid) and five tillandsioid bromeliads (Catopsis nutans (Sw.) Griseb., Tillandsia fas-ciculata Sw., T. streptophylla Scheidw., T. stricta Soland., T. tectorum E. Morr.) were assayed for permeability to Ca, S and P ions. Compared to leaves of the atmospheric bromeliads, those of the orchids proved less permeable to Ca and S. Moisture exchange profiles were determined for two of the bromeliads and three orchids; bromeliad leaves were able to rehydrate completely, orchid leaves only partially. Absorptive capacities of trichomes borne by five taxa were tested by autoradiographic analysis. Unlike bromeliad trichomes, those of the orchids exhibited no capacity to accumulate 3H-leucine. These results and other considerations described here suggest that, unlike tillandsioid bromeliads, neither the pleurothallid nor the nonpleurothallid orchids examined in this survey rely heavily on shoots for mineral and moisture procurement.  相似文献   

15.
  • The future impact of climate change and a warmer world is a matter of great concern. We therefore aimed to evaluate the effects of temperature on pollen viability and fruit set of Mediterranean orchids.
  • The in vitro and controlled pollination experiments were performed to evaluate the ability of pollinia stored at lower and higher temperatures to germinate and produce fruits and seeds containing viable embryos.
  • In all of the examined orchids, pollen stored at ?20 °C remained fully viable for up to 3 years, reducing its percentage germination from year 4 onwards. Pollinia stored at higher temperatures had a drastic reduction in vitality after 2 days at 41–44 °C, while pollinia stored at 47–50 °C did not show any pollen tube growth.
  • The different levels of pollen viability duration among the examined orchids can be related to their peculiar reproductive biology and pollination ecology. The germinability of pollinia stored at lower temperatures for long periods suggests that orchid pollinia can be conserved ex situ. In contrast, higher temperatures can have harmful effects on the vitality of pollen and consequently on reproductive success of the plants. To our knowledge, this is the first report demonstrating the effects of global change on orchid pollen, and on pollen ability to tolerate, or not, higher air temperatures. Although vegetative reproduction allows orchids to survive a few consecutive warm years, higher temperatures for several consecutive years can have dramatic effects on reproductive success of orchids.
  相似文献   

16.
The diversity of mycorrhizal fungi associated with an introduced weed-like South African orchid (Disa bracteata) and a disturbance-intolerant, widespread, native West Australian orchid (Pyrorchis nigricans) were compared by molecular identification of the fungi isolated from single pelotons. Molecular identification revealed both orchids were associated with fungi from diverse groups in the Rhizoctonia complex with worldwide distribution. Symbiotic germination assays confirmed the majority of fungi isolated from pelotons were mycorrhizal and a factorial experiment uncovered complex webs of compatibility between six terrestrial orchids and 12 fungi from Australia and South Africa. Two weed-like (disturbance-tolerant rapidly spreading) orchids — D. bracteata and the indigenous Australian Microtis media, had the broadest webs of mycorrhizal fungi. In contrast, other native orchids had relatively small webs of fungi (Diuris magnifica and Thelymitra crinita), or germinated exclusively with their own fungus (Caladenia falcata and Pterostylis sanguinea). Orchids, such as D. bracteata and M. media, which form relationships with diverse webs of fungi, had apparent specificity that decreased with time, as some fungi had brief encounters with orchids that supported protocorm formation but not subsequent seedling growth. The interactions between orchid mycorrhizal fungi and their hosts are discussed.  相似文献   

17.
Male solitary bees typically use emergence‐nesting areas and/or flower patches of food plants, where receptive females are relatively numerous, as rendezvous sites. However, mate‐seeking males have been also observed at food‐deceptive orchid patches, where numerous encounters with foraging females can hardly be expected, owing to the lack of floral rewards. Here, we describe the male mate‐seeking and mating behaviors of the Japanese long‐horned bee Eucera nipponensis at habitats of the food‐deceptive orchid Cymbidium goeringii. On the basis of the results, we report empty flower patches are not necessarily fruitless sites for mate‐seeking males because naive female bees, which are highly likely to be recently emerged and unmated, can be attracted to non‐rewarding orchids. We also suggest a possibility that a small number of the males could receive a “sexual reward” (i.e. mating opportunities), owing to the food‐deceptive orchid, in return for their pollination work. This occasional interaction could represent the initial stage in the evolution of sexually deceptive orchids from food‐deceptive orchids.  相似文献   

18.
A Rhizoctonia species isolated from Cymbidium has been cultured successfully on a defined medium consisting of minerals, sugar, thiamine, and folic acid. Thiamine can be replaced by its thiazole component, which is probably produced by germinating orchids. The fungus apparently produces the pyrimidine moiety of thiamine, a compound which may enhance growth of certain orchid seedlings. Niacin is also provided by the fungus. Para-aminobenzoic acid, a constituent of folic acid, produced and released by orchid seeds, can satisfy the vitamin requirement of the fungus. These findings point to the possibility that orchids and their fungi may have coevolved with respect to vitamin requirements. The data also suggest that exchanges of vitamins or their components between orchids and endophytes are important aspects of the symbiotic relationship.  相似文献   

19.
20.
Cymbidium Mosaic Virus (CymMV) and Erwinia carotovora have been reported to cause severe damage to orchid plants. To enhance the resistance of orchids to both viral and bacterial phytopathogens, gene stacking was applied on Phalaenopsis orchid by double transformation. PLBs originally transformed with CymMV coat protein cDNA (CP) were then re-transformed with sweet pepper ferredoxin-like protein cDNA (Pflp) by Agrobacterium tumefaciens, to enable expression of dual (viral and bacterial) disease resistant traits. A non-antibiotic selection procedure in the second transformation minimized the potential rate of ‘stacking’ antibiotic genes in the orchid gene pool. Transgene integration in transgenic Phalaenopsis lines was confirmed by Southern blot analysis for both CP and pflp genes. Expression of transgenes was detected by northern blot analysis, and disease resistant assays revealed that transgenic lines exhibited enhanced resistance to CymMV and E. carotovora. This is the first report describing a transgenic Phalaenopsis orchid with dual resistance to phytopathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号