首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Standard epidemiological theory predicts that parasites, which continuously release propagules during infection, face a trade‐off between virulence and transmission. However, little is known how host resistance and parasite virulence change during coevolution with obligate killers. To address this question we have set up a coevolution experiment evolving Nosema whitei on eight distinct lines of Tribolium castaneum. After 11 generations we conducted a time‐shift experiment infecting both the coevolved and the replicate control host lines with the original parasite source, and coevolved parasites from generation 8 and 11. We found higher survival in the coevolved host lines than in the matching control lines. In the parasite populations, virulence measured as host mortality decreased during coevolution, while sporeload stayed constant. Both patterns are compatible with adaptive evolution by selection for resistance in the host and by trade‐offs between virulence and transmission potential in the parasite.  相似文献   

2.
Models of virulence evolution for horizontally transmitted parasites often assume that transmission rate (the probability that an infected host infects a susceptible host) and virulence (the increase in host mortality due to infection) are positively correlated, because higher rates of production of propagules may cause more damages to the host. However, empirical support for this assumption is scant and limited to microparasites. To fill this gap, we explored the relationships between parasite life history and virulence in the salmon louse, Lepeophtheirus salmonis, a horizontally transmitted copepod ectoparasite on Atlantic salmon Salmo salar. In the laboratory, we infected juvenile salmon hosts with equal doses of infective L. salmonis larvae and monitored parasite age at first reproduction, parasite fecundity, area of damage caused on the skin of the host, and host weight and length gain. We found that earlier onset of parasite reproduction was associated with higher parasite fecundity. Moreover, higher parasite fecundity (a proxy for transmission rate, as infection probability increases with higher numbers of parasite larvae released to the water) was associated with lower host weight gain (correlated with lower survival in juvenile salmon), supporting the presence of a virulence–transmission trade‐off. Our results are relevant in the context of increasing intensive farming, where frequent anti‐parasite drug use and increased host density may have selected for faster production of parasite transmission stages, via earlier reproduction and increased early fecundity. Our study highlights that salmon lice, therefore, are a good model for studying how human activity may affect the evolution of parasite virulence.  相似文献   

3.
The transmission–virulence trade‐off hypothesis is one of the few adaptive explanations of virulence evolution, and assumes that there is an overall positive correlation between parasite transmission and virulence. The shape of the transmission–virulence relationship predicts whether virulence should evolve toward either a maximum or to an intermediate optimum. A positive correlation between each of these traits and within‐host growth is often suggested to underlie the relationship between virulence and transmission. There are few experimental tests of this hypothesis; this study reports on the first empirical test on a plant pathogen. We infected Brassica rapa plants with nine natural isolates of Cauliflower mosaic virus and then estimated three traits: transmission, virulence, and within‐host viral accumulation. As predicted by the trade‐off hypothesis, we observed a positive correlation between transmission and virulence, suggestive of the existence of an intermediate optimum. We discovered the unexpected existence of two groups of within‐host accumulation, differing by at least an order of magnitude. When accumulation groups were not accounted for, within‐host accumulation was correlated neither to virulence nor transmission, although our results suggest that within each group these correlations exist.  相似文献   

4.
A trade‐off between a pathogen's ability to infect many hosts and its reproductive capacity on each host genotype is predicted to limit the evolution of an expanded host range, yet few empirical results provide evidence for the magnitude of such trade‐offs. Here, we test the hypothesis for a trade‐off between the number of host genotypes that a fungal pathogen can infect (host genotype range) and its reproductive capacity on susceptible plant hosts. We used strains of the oat crown rust fungus that carried widely varying numbers of virulence (avr) alleles known to determine host genotype range. We quantified total spore production and the expression of four pathogen life‐history stages: infection efficiency, time until reproduction, pustule size, and spore production per pustule. In support of the trade‐off hypothesis, we found that virulence level, the number of avr alleles per pathogen strain, was correlated with significant delays in the onset of reproduction and with smaller pustule sizes. Modeling from our results, we conclude that trade‐offs have the capacity to constrain the evolution of host genotype range in local populations. In contrast, long‐term trends in virulence level suggest that the continued deployment of resistant host lines over wide regions of the United States has generated selection for increased host genotype range.  相似文献   

5.
Parasites rely on resources from a host and are selected to achieve an optimal combination of transmission and virulence. Human‐induced changes in parasite ecology, such as intensive farming of hosts, might not only favour increased parasite abundances, but also alter the selection acting on parasites and lead to life‐history evolution. The trade‐off between transmission and virulence could be affected by intensive farming practices such as high host density and the use of antiparasitic drugs, which might lead to increased virulence in some host–parasite systems. To test this, we therefore infected Atlantic salmon (Salmo salar) smolts with salmon lice (Lepeophtheirus salmonis) sampled either from wild or farmed hosts in a laboratory experiment. We compared growth and skin damage (i.e. proxies for virulence) of hosts infected with either wild or farmed lice and found that, compared to lice sampled from wild hosts in unfarmed areas, those originating from farmed fish were more harmful; they inflicted more skin damage to their hosts and reduced relative host weight gain to a greater extent. We advocate that more evolutionary studies should be carried out using farmed animals as study species, given the current increase in intensive food production practices that might be compared to a global experiment in parasite evolution.  相似文献   

6.
In parasites with mixed modes of transmission, ecological conditions may determine the relative importance of vertical and horizontal transmission for parasite fitness. This may lead to differential selection pressure on the efficiency of the two modes of transmission and on parasite virulence. In populations with high birth rates, increased opportunities for vertical transmission may select for higher vertical transmissibility and possibly lower virulence. We tested this idea in experimental populations of the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. Serial dilution produced constant host population growth and frequent vertical transmission. Consistent with predictions, evolved parasites from this “high‐growth” treatment had higher fidelity of vertical transmission and lower virulence than parasites from host populations constantly kept near their carrying capacity (“low‐growth treatment”). High‐growth parasites also produced fewer, but more infectious horizontal transmission stages, suggesting the compensation of trade‐offs between vertical and horizontal transmission components in this treatment. These results illustrate how environmentally driven changes in host demography can promote evolutionary divergence of parasite life history and transmission strategies.  相似文献   

7.
The virulence–transmission trade‐off hypothesis proposed more than 30 years ago is the cornerstone in the study of host–parasite co‐evolution. This hypothesis rests on the premise that virulence is an unavoidable and increasing cost because the parasite uses host resources to replicate. This cost associated with replication ultimately results in a deceleration in transmission rate because increasing within‐host replication increases host mortality. Empirical tests of predictions of the hypothesis have found mixed support, which cast doubt about its overall generalizability. To quantitatively address this issue, we conducted a meta‐analysis of 29 empirical studies, after reviewing over 6000 published papers, addressing the four core relationships between (1) virulence and recovery rate, (2) within‐host replication rate and virulence, (3) within‐host replication and transmission rate, and (4) virulence and transmission rate. We found strong support for an increasing relationship between replication and virulence, and replication and transmission. Yet, it is still uncertain if these relationships generally decelerate due to high within‐study variability. There was insufficient data to quantitatively test the other two core relationships predicted by the theory. Overall, the results suggest that the current empirical evidence provides partial support for the trade‐off hypothesis, but more work remains to be done.  相似文献   

8.
Parasites can certainly harm host fitness. Given such virulence, hosts should evolve strategies to resist or tolerate infection. But what governs those strategies and the costs that they incur? This study illustrates how a fecundity‐susceptibility trade‐off among clonally reared genotypes of a zooplankton (Daphnia dentifera) infected by a fungal parasite (Metschnikowia) arises due to variation in resource acquisition and use by hosts. To make these connections, we used lab experiments and theoretical models that link feeding with susceptibility, energetics, and fecundity of hosts. These feeding‐based mechanisms also produced a fecundity‐survivorship trade‐off. Meanwhile, a parasite spore yield–fecundity trade‐off arose from variation in juvenile growth rate among host clones (another index of resource use), a result that was readily anticipated and explained by the models. Thus, several key epidemiological trade‐offs stem from variation in resource acquisition and use among clones. This connection should catalyze the creation of new theory that integrates resource‐ and gene‐based responses of hosts to disease.  相似文献   

9.
Trade‐offs are fundamental to evolutionary outcomes and play a central role in eco‐evolutionary theory. They are often examined by experimentally selecting on one life‐history trait and looking for negative correlations in other traits. For example, populations of the moth Plodia interpunctella selected to resist viral infection show a life‐history cost with longer development times. However, we rarely examine whether the detection of such negative genetic correlations depends on the trait on which we select. Here, we examine a well‐characterized negative genotypic trade‐off between development time and resistance to viral infection in the moth Plodia interpunctella and test whether selection on a phenotype known to be a cost of resistance (longer development time) leads to the predicted correlated increase in resistance. If there is tight pleiotropic relationship between genes that determine development time and resistance underpinning this trade‐off, we might expect increased resistance when we select on longer development time. However, we show that selecting for longer development time in this system selects for reduced resistance when compared to selection for shorter development time. This shows how phenotypes typically characterized by a trade‐off can deviate from that trade‐off relationship, and suggests little genetic linkage between the genes governing viral resistance and those that determine response to selection on the key life‐history trait. Our results are important for both selection strategies in applied biological systems and for evolutionary modelling of host–parasite interactions.  相似文献   

10.
The evolution of parasite life histories should usually have correlated effects on host survivorship and/or reproductive success. For example, parasites that reproduce more rapidly might be expected to cause greater reductions in host fitness. Important theoretical advances have recently been made on virulence evolution, but the results are not always consistent. Here I compare two models [ Q. Rev. Biol. 71 (1996) 37 ; Q. Rev. Biol. 75 (2000) 261 ] on the evolution of virulence that get qualitatively different results with respect to the effects of coinfection. I also construct a third model that attempts to connect these two formulations. The results suggest that parasite growth rates should increase as local host competition increases, unless relatedness is at equilibrium. In addition, the qualitative effect of adding coinfections on parasite growth rates depends critically on how the number of coinfections affects transmission success.  相似文献   

11.
Vector‐borne parasites must succeed at three scales to persist: they must proliferate within a host, establish in vectors, and transmit back to hosts. Ecology outside the host undergoes dramatic seasonal and human‐induced changes, but predicting parasite evolutionary responses requires integrating their success across scales. We develop a novel, data‐driven model to titrate the evolutionary impact of ecology at multiple scales on human malaria parasites. We investigate how parasites invest in transmission versus proliferation, a life‐history trait that influences disease severity and spread. We find that transmission investment controls the pattern of host infectiousness over the course of infection: a trade‐off emerges between early and late infectiousness, and the optimal resolution of that trade‐off depends on ecology outside the host. An expanding epidemic favors rapid proliferation, and can overwhelm the evolutionary influence of host recovery rates and mosquito population dynamics. If transmission investment and recovery rate are positively correlated, then ecology outside the host imposes potent selection for aggressive parasite proliferation at the expense of transmission. Any association between transmission investment and recovery represents a key unknown, one that is likely to influence whether the evolutionary consequences of interventions are beneficial or costly for human health.  相似文献   

12.
It has been more than two decades since the formulation of the so‐called ‘trade‐off’ hypothesis as an alternative to the then commonly accepted idea that parasites should always evolve towards avirulence (the ‘avirulence hypothesis’). The trade‐off hypothesis states that virulence is an unavoidable consequence of parasite transmission; however, since the 1990s, this hypothesis has been increasingly challenged. We discuss the history of the study of virulence evolution and the development of theories towards the trade‐off hypothesis in order to illustrate the context of the debate. We investigate the arguments raised against the trade‐off hypothesis and argue that trade‐offs exist, but may not be of the simple form that is usually assumed, involving other mechanisms (and life‐history traits) than those originally considered. Many processes such as pathogen adaptation to within‐host competition, interactions with the immune system and shifting transmission routes, will all be interrelated making sweeping evolutionary predictions harder to obtain. We argue that this is the heart of the current debate in the field and while species‐specific models may be better predictive tools, the trade‐off hypothesis and its basic extensions are necessary to assess the qualitative impacts of virulence management strategies.  相似文献   

13.
We present a general host–parasite model that unifies previous theory by investigating the coevolution of virulence, resistance, and tolerance, with respect to multiple physiological, epidemiological, and environmental parameters. Four sets of new predictions emerge. First, compared to virulence coevolving with resistance or tolerance, three‐trait coevolution promotes more virulence and less tolerance, and broadens conditions under which pure defenses evolve. Second, the cost and efficiency of virulence and the epidemiological rates are the key factors of virulence coevolving with resistance and tolerance. Maximum virulence evolves for intermediate infection rate, at which coevolved levels of resistance and tolerance are both high. The influence of host and parasite background mortalities is strong on the evolution of defenses and weak on the coevolution of virulence. Third, evolutionary correlations between defenses can switch sign along single‐parameter gradients. The evolutionary trade‐off between resistance and tolerance may coevolve with virulence that either increases or decreases monotonically, depending on the underlying parameter gradient. Fourth, despite global attractiveness and stability of coevolutionary equilibria, not‐so‐rare and not‐so‐small mutations can beget large variation in virulence and defenses around equilibrium, in the form of transient “evolutionary spikes.” Implications for evolutionary management of infections are discussed and directions for future research are outlined.  相似文献   

14.
The ''curse of the pharaoh'' has been used as a metaphor for the hypothesis that higher parasite propagule survival selects for higher virulence. Indeed, the mysterious death of Lord Carnavon after entering the tomb of the Egyptian pharaoh Tutankhamen could potentially be explained by an infection with a highly virulent and very long-lived pathogen. In this paper, I investigate whether parasite virulence increases with high propagule survival. In this respect, I derive an analytic expression of the evolutionarily stable level of parasite virulence as a function of propagule survival rate when the host-parasite system has reached a stable ecological equilibrium. This result shows that, if multiple infection occurs, higher propagule survival generally increases parasite virulence. This effect is enhanced when parasite dispersal coevolves with parasite virulence. In a more general perspective, the model shows the importance of taking into account the combination of direct and indirect effects (which I call inclusive effects) of higher transmission ability on the evolution of parasite virulence. The recognition of these effects has several practical implications for virulence management.  相似文献   

15.
Parasites are known to profoundly affect resource allocation in their host. In order to investigate the effects of Cryphonectria Hypovirus 1 (CHV1) on the life‐history traits of its fungal host Cryphonectria parasitica, an infection matrix was completed with the cross‐infection of six fungal isolates by six different viruses. Mycelial growth, asexual sporulation, and spore size were measured in the 36 combinations, for which horizontal and vertical transmission of the viruses was also assessed. As expected by life‐history theory, a significant negative correlation was found between host somatic growth and asexual reproduction in virus‐free isolates. Interestingly this trade‐off was found to be positive in infected isolates, illustrating the profound changes in host resource allocation induced by CHV1 infection. A significant and positive relationship was also found in infected isolates between vertical transmission and somatic growth. This last relationship suggests that in this system, high levels of virulence could be detrimental to the vertical transmission of the parasite. Those results underscore the interest of studying host–parasite interaction within the life‐history theory framework, which might permit a more accurate understanding of the nature of the modifications triggered by parasite infection on host biology.  相似文献   

16.
The patterns of immunity conferred by host sex or age represent two sources of host heterogeneity that can potentially shape the evolutionary trajectory of disease. With each host sex or age encountered, a pathogen's optimal exploitative strategy may change, leading to considerable variation in expression of pathogen transmission and virulence. To date, these host characteristics have been studied in the context of host fitness alone, overlooking the effects of host sex and age on the fundamental virulence–transmission trade‐off faced by pathogens. Here, we explicitly address the interaction of these characteristics and find that host sex and age at exposure to a pathogen affect age‐specific patterns of mortality and the balance between pathogen transmission and virulence. When infecting age‐structured male and female Daphnia magna with different genotypes of Pasteuria ramosa, we found that infection increased mortality rates across all age classes for females, whereas mortality only increased in the earliest age class for males. Female hosts allowed a variety of trade‐offs between transmission and virulence to arise with each age and pathogen genotype. In contrast, this variation was dampened in males, with pathogens exhibiting declines in both virulence and transmission with increasing host age. Our results suggest that differences in exploitation potential of males and females to a pathogen can interact with host age to allow different virulence strategies to coexist, and illustrate the potential for these widespread sources of host heterogeneity to direct the evolution of disease in natural populations.  相似文献   

17.
Maintenance and deployment of the immune system are costly and are hence predicted to trade‐off with other resource‐demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes—I (Infection with Pseudomonas entomophila), S (Sham‐infection with MgSO4), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade‐offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade‐offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life‐history trade‐offs might play little role in maintaining variation in immunity.  相似文献   

18.
Troy Day 《Ecology letters》2002,5(4):471-476
Many pathogens produce resilient free-living propagules that allow their dissemination in the absence of direct contact between susceptible and infected hosts. One might expect pathogens capable of producing such long-lived propagules to evolve high levels of virulence because their reproductive success is de-coupled from the survival of their host. Despite some comparative data supporting this prediction, theory has questioned its general validity. I present theoretical results that incorporate two transmission routes neglected by previous theory: death-mediated propagule production and direct host-host transmission. This theory predicts that spore-producing pathogens should evolve high levels of virulence under quite broad conditions. Moreover, a novel prediction of this theory is that the production of propagules can generate selection for the evolution of pathogen characteristics such as toxins whose sole function is to kill the host. This latter result reveals an unanticipated mechanism through which virulence is expected to evolve in spore-producing pathogens.  相似文献   

19.
In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host‐use trade‐offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade‐offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria‐phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade‐offs.  相似文献   

20.
Marek’s disease virus (MDV), a commercially important disease of poultry, has become substantially more virulent over the last 60 years. This evolution was presumably a consequence of changes in virus ecology associated with the intensification of the poultry industry. Here, we assess whether vaccination or reduced host life span could have generated natural selection, which favored more virulent strains. Using previously published experimental data, we estimated viral fitness under a range of cohort durations and vaccine treatments on broiler farms. We found that viral fitness maximized at intermediate virulence, as a result of a trade‐off between virulence and transmission previously reported. Our results suggest that vaccination, acting on this trade‐off, could have led to the evolution of increased virulence. By keeping the host alive, vaccination prolongs infectious periods of virulent strains. Improvements in host genetics and nutrition, which reduced broiler life spans below 50 days, could have also increased the virulence of the circulating MDV strains because shortened cohort duration reduces the impact of host death on viral fitness. These results illustrate the dramatic impact anthropogenic change can potentially have on pathogen virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号