首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Scp160p is a 160 kDa RNA-binding protein in yeast previously demonstrated to associate with specific messages as an mRNP component of both soluble and membrane-bound polyribosomes. Although the vast majority of Scp160p sequence consists of 14 closely spaced KH domains, comparative sequence analyses also demonstrate the presence of a potential nuclear localization sequence located between KH domains 3 and 4, as well as a 110 amino acid non-KH N-terminal region that includes a potential nuclear export sequence (NES). As a step toward investigating the structure/function relationships of Scp160p, we generated two truncated alleles, FLAG.SCP160ΔN1, encoding a protein product that lacks the first 74 amino acids, including the potential NES, and FLAG.SCP160ΔC1, encoding a protein product that lacks the final KH domain (KH14). We report here that the N-truncated protein, expressed as a green fluorescent protein fusion in yeast, remains cytoplasmic, with no apparent nuclear accumulation. Biochemical studies further demonstrate that although the N-truncated protein remains competent to form RNPs, the C-truncated protein does not. Furthermore, polyribosome association is severely compromised for both truncated proteins. Perhaps most important, both truncated alleles appear only marginally functional in vivo, as demonstrated by the inability of each to complement scp160/eap1 synthetic lethality in a tester strain. Together, these data challenge the notion that Scp160p normally shuttles between the nucleus and cytoplasm, and further implicate polyribosome association as an essential component of Scp160p function in vivo. Finally, these data underscore the vital roles of both KH and non-KH domain sequences in Scp160p.  相似文献   

2.
Scp160p is a 160 kDa protein in the yeast Saccharomyces cerevisiae that contains 14 repeats of the hnRNP K-homology (KH) domain, and demonstrates significant sequence homology to a family of proteins collectively known as vigilins. As a first step towards defining the function of Scp160p, we have characterized the subcellular distribution and in vivo interactions of this protein. Using sucrose gradient fractionation studies we have demonstrated that Scp160p in cytoplasmic lysates is predominantly associated with polyribosomes. Furthermore, we have found that Scp160p is released from polyribosomes by EDTA in the form of a large complex of 1300 kDa that is sensitive both to RNase and NaCl. Using affinity-chromatography to isolate these complexes, we have identified two protein components other than Scp160p: poly(A) binding protein, Pab1p, and Bfr1p. The presence of Pab1p confirms these complexes to be mRNPs. The presence of Bfr1p is intriguing because the null phenotype for this gene is essentially the same as that reported for scp160-null cells: increased cell size and aberrant DNA content. These results demonstrate that Scp160p associates with polyribosome-bound mRNP complexes in vivo, implicating a role for this protein in one or more levels of mRNA metabolism in yeast.  相似文献   

3.
PUF proteins are eukaryotic RNA-binding proteins that repress specific mRNAs. The mechanisms and corepressors involved in PUF repression remain to be fully identified. Here, we investigated the mode of repression by Saccharomyces cerevisiae Puf5p and Puf4p and found that Puf5p specifically requires Eap1p to repress mRNAs, whereas Puf4p does not. Surprisingly, we observed that Eap1p, which is a member of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP) class of translational inhibitors, does not inhibit the efficient polyribosome association of a Puf5p target mRNA. Rather, we found that Eap1p accelerates mRNA degradation by promoting decapping, and the ability of Eap1p to interact with eIF4E facilitates this activity. Deletion of EAP1 dramatically reduces decapping, resulting in accumulation of deadenylated, capped mRNA. In support of this phenotype, Eap1p associates both with Puf5p and the Dhh1p decapping factor. Furthermore, recruitment of Eap1p to downregulated mRNA is mediated by Puf5p. On the basis of these results, we propose that Puf5p promotes decapping by recruiting Eap1p and associated decapping factors to mRNAs. The implication of these findings is that a 4E-BP can repress protein expression by promoting specific mRNA degradation steps in addition to or in lieu of inhibiting translation initiation.  相似文献   

4.
A rate-limiting step during translation initiation in eukaryotic cells involves binding of the initiation factor eIF4E to the 7-methylguanosine-containing cap of mRNAs. Overexpression of eIF4E leads to malignant transformation [1-3], and eIF4E is elevated in many human cancers [4-7]. In mammalian cells, three eIF4E-binding proteins each interact with eIF4E and inhibit its function [8-10]. In yeast, EAP1 encodes a protein that binds eIF4E and inhibits cap-dependent translation in vitro [11]. A point mutation in the canonical eIF4E-binding motif of Eap1p blocks its interaction with eIF4E [11]. Here, we characterized the genetic interactions between EAP1 and NDC1, a gene whose function is required for duplication of the spindle pole body (SPB) [12], the centrosome-equivalent organelle in yeast that functions as the centrosome. We found that the deletion of EAP1 is lethal when combined with the ndc1-1 mutation. Mutations in NDC1 or altered NDC1 gene dosage lead to genetic instability [13,14]. Yeast strains lacking EAP1 also exhibit genetic instability. We tested whether these phenotypes are due to loss of EAP1 function in regulating translation. We found that both the synthetic lethal phenotype and the genetic instability phenotypes are rescued by a mutant allele of EAP1 that is unable to bind eIF4E. Our findings suggest that Eap1p carries out an eIF4E-independent function to maintain genetic stability, most likely involving SPBs.  相似文献   

5.
Scp160p associates with specific mRNAs in yeast   总被引:9,自引:5,他引:4  
Scp160p is a multiple KH-domain RNA-binding protein in yeast that has been demonstrated previously to associate with both soluble and membrane-bound polyribosomes as an mRNP component. One key question that has remained unanswered, however, is whether the mRNAs in these mRNP complexes are random or specific. We have addressed this question using microarray analyses of RNAs released from affinity isolated Scp160p-containing complexes, compared with total RNA controls from the same lysates. Our results, confirmed by quantitative RT–PCR analysis, clearly demonstrate that Scp160p associates with specific rather than with random messages, and that among the enriched targets are DHH1, YOR338W, BIK1, YOL155C and NAM8. Furthermore, loss of Scp160p resulted in a significant change in both the abundance and distribution between soluble and membrane-associated fractions for at least one of these messages (YOR338W), and in a subtle yet significant shift from soluble polyribosomes to soluble mRNPs for at least two of these target messages (DHH1 and YOR338W). Together, these data not only identify specific mRNA targets associated with Scp160p in vivo, they demonstrate that the association of Scp160p with these messages is biologically relevant.  相似文献   

6.
The yeast SM22 homologue Scp1 has previously been shown to act as an actin-bundling protein in vitro. In cells, Scp1 localizes to the cortical actin patches that form as part of the invagination process during endocytosis, and its function overlaps with that of the well characterized yeast fimbrin homologue Sac6p. In this work we have used live cell imaging to demonstrate the importance of key residues in the Scp1 actin interface. We have defined two actin binding domains within Scp1 that allow the protein to both bind and bundle actin without the need for dimerization. Green fluorescent protein-tagged mutants of Scp1 also indicate that actin localization does not require the putative phosphorylation site Ser-185 to be functional. Deletion of SCP1 has few discernable effects on cell growth and morphology. However, we reveal that scp1 deletion is compensated for by up-regulation of Sac6. Furthermore, Scp1 levels are increased in the absence of sac6. The presence of compensatory pathways to up-regulate Sac6 or Scp1 levels in the absence of the other suggest that maintenance of sufficient bundling activity is critical within the cell. Analysis of cortical patch assembly and movement during endocytosis reveals a previously undetected role for Scp1 in movement of patches away from the plasma membrane. Additionally, we observe a dramatic increase in patch lifetime in a strain lacking both sac6 and scp1, demonstrating the central role played by actin-bundling proteins in the endocytic process.  相似文献   

7.
Ribosome binding to eukaryotic mRNA is a multistep process which is mediated by the cap structure [m(7)G(5')ppp(5')N, where N is any nucleotide] present at the 5' termini of all cellular (with the exception of organellar) mRNAs. The heterotrimeric complex, eukaryotic initiation factor 4F (eIF4F), interacts directly with the cap structure via the eIF4E subunit and functions to assemble a ribosomal initiation complex on the mRNA. In mammalian cells, eIF4E activity is regulated in part by three related translational repressors (4E-BPs), which bind to eIF4E directly and preclude the assembly of eIF4F. No structural counterpart to 4E-BPs exists in the budding yeast, Saccharomyces cerevisiae. However, a functional homolog (named p20) has been described which blocks cap-dependent translation by a mechanism analogous to that of 4E-BPs. We report here on the characterization of a novel yeast eIF4E-associated protein (Eap1p) which can also regulate translation through binding to eIF4E. Eap1p shares limited homology to p20 in a region which contains the canonical eIF4E-binding motif. Deletion of this domain or point mutation abolishes the interaction of Eap1p with eIF4E. Eap1p competes with eIF4G (the large subunit of the cap-binding complex, eIF4F) and p20 for binding to eIF4E in vivo and inhibits cap-dependent translation in vitro. Targeted disruption of the EAP1 gene results in a temperature-sensitive phenotype and also confers partial resistance to growth inhibition by rapamycin. These data indicate that Eap1p plays a role in cell growth and implicates this protein in the TOR signaling cascade of S. cerevisiae.  相似文献   

8.
9.
The yeast gene BFR1 was originally isolated from a genetic screen for high-copy suppressors of brefeldin A-induced lethality in Saccharomyces cerevisiae. While this result suggested a possible role for the encoded protein, Bfr1p, in the secretory pathway, subsequent data have not fully supported this conclusion. Alternatively, Bfr1p has also been found by yeast two-hybrid analysis to interact with Bbp1p, a component of the spindle pole body. Finally, we have reported that Bfr1p associates with cytoplasmic mRNP complexes containing Scp160p, raising the possibility that Bfr1p may function in mRNA metabolism. Here, we have explored this possibility further. We report that Bfr1p associates with yeast polyribosomes and mRNP complexes even in the absence of Scp160p, and that its interaction with Scp160p-containing mRNP complexes is RNA-dependent. Furthermore, we have determined by fluorescence microscopy and subcellular fractionation that Bfr1p and Scp160p demonstrate similar cytoplasmic localization with enrichment around the nuclear envelope/endoplasmic reticulum. Finally, we report that loss of Bfr1p disrupts the interaction of Scp160p with polyribosomes, thereby demonstrating that the relationship between these two proteins is functional as well as physical. Considered together, these data raise the intriguing possibility that Bfr1p may provide a link between mRNA metabolism, the chromosomal segregation machinery and perhaps secretion in yeast.  相似文献   

10.
Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3 + was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC), a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3 + gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3 + suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1 + gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号