首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
The elongation of the cooked grain determines the cooking and eating quality of Basmati rice. The identification of stable quantitative trait loci (QTLs), especially those from non-Basmati types, will extend the genetic basis of the Basmati type and facilitate the breeding of high-quality varieties. A set of recombinant inbred lines derived from an indica x japonica hybrid was used to identify QTLs controlling the elongation ratio (ER), elongation index (EI), and water absorption (WA) of the cooked grain. Three ER QTLs on chromosomes 2, 4, and 12, two EI QTLs on chromosomes 2 and 5, and two WA QTLs on chromosomes 2 and 6 were detected. Four of these QTLs were validated using a set of established chromosome segment substitution lines. The genetic effect of qER-2 was explored in an analysis of segregating generations, using 8 newly developed simple sequence repeat markers. Two tightly linked loci (qER-2a and qER-2b) were identified on chromosome 2.  相似文献   

2.
水稻米粒延伸性的遗传剖析   总被引:5,自引:0,他引:5  
以籼稻ZYQ8与粳稻JX17为亲本的DH群体作为研究材料,考察DH群体及双亲的米粒延伸率相关性状,并使用该群体的分子连锁图谱进行QTL分析.共检测到14个与稻米延伸性有关的QTL,包括2个粒长QTL、7个饭粒长QTL和5个米粒延伸率QTL,分别位于第1、2、3、5、6、7、10、11和12染色体.所有QTL的LOD值介于2.26~9.25,分别解释性状变异的5.31%~17.21%.在第3染色体上的G249~G164、第6染色体上的G30~RZ516和第10染色体上的G1082~GA223区间同时检测到控制饭粒长和米粒延伸率的QTL.米粒延伸性受多基因控制,Wx基因与位于第6染色体上的qCRE-6的G30~RZ516区间相近,对米饭的延伸性具重要影响.  相似文献   

3.
Traditional basmati rice varieties are very low yielding due to their poor harvest index, tendency to lodging and increasing susceptibility to foliar diseases; hence there is a need to develop new varieties combining the grain quality attributes of basmati with high yield potential to fill the demand gap. Genetic control of basmati grain and cooking quality traits is quite complex, but breeding work can be greatly facilitated by use of molecular markers tightly linked to these traits. A set of 209 recombinant inbred lines (RILs) developed from a cross between basmati quality variety Pusa 1121 and a contrasting quality breeding line Pusa 1342, were used to map the quantitative trait loci (QTLs) for seven important quality traits namely grain length (GL), grain breadth (GB), grain length to breadth ratio (LBR), cooked kernel elongation ratio (ELR), amylose content (AC), alkali spreading value (ASV) and aroma. A framework molecular linkage map was constructed using 110 polymorphic simple sequence repeat (SSR) markers distributed over the 12 rice chromosomes. A number of QTLs, including three for GL, two for GB, two for LBR, three for aroma and one each for ELR, AC and ASV were mapped on seven different chromosomes. While location of majority of these QTLs was consistent with the previous reports, one QTL for GL on chromosomes 1, and one QTL each for ELR and aroma on chromosomes 11 and 3, respectively, are being reported here for the first time. Contrary to the earlier reports of monogenic recessive inheritance, the aroma in Pusa 1121 is controlled by at least three genes located on chromosomes 3, 4 and 8, and similar to the reported association of badh2 gene with aroma QTL on chromosome 8, we identified location of badh1 gene in the aroma QTL interval on chromosome 4. A discontinuous 5 + 3 bp deletion in the seventh exon of badh2 gene, though present in all the RILs with high aroma, was not sufficient to impart this trait to the rice grains as many of the RILs possessing this deletion showed only mild or no aroma expression. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
A double haploid(DH)population,which consists of 120 lines derived from anther culture of a typical indica and japonica hybrid 'CJ06'/'TN1',was used to investigate the genetic basis for rice leaffolder resistance.Using a constructed molecular linkage map,five QTLs for rolled leaves were detected on chromosomes 1,2,3,4,and 8.The positive alleles from CJ06 on chromosomes 3,4,and 8 in-creased the resistance to rice leaffolder,and the alleles from TN1 on chromosomes 1 and 2 also enhanced resistance to leaffolde...  相似文献   

5.
以旱稻品种IRAT109与水稻品种越富杂交构建的DH群体的116个株系及其亲本为材料,在水、旱2种栽培条件下种植,研究了稻米蒸煮和营养品质性状的变化规律,在水、旱2个土壤水分环境下对直链淀粉含量(AC)、胶稠度(GC)、碱消值(GT)和蛋白质含量(PC)4个蒸煮和营养品质性状进行QTL定位及QTLs与环境互作分析。结果表明,以上4个品质性状在水、旱2种不同栽培条件下差异较大,说明这些性状受水分条件影响较大,旱栽条件下稻米蒸煮和营养各品质性状均有不同程度的升高,其中蛋白质含量平均提高37.9%。QTL分析结果表明,4个稻米品质性状在2个环境中的表现型值都为连续分布,均存在超亲遗传类型,共检测到7个加性效应QTL与稻米蒸煮和营养品质性状4项指标有关,分别位于第1、2、3、6、8、11染色体上,单个QTLs对性状的贡献率在1.91%~19.77%之间。位于第3染色体上控制碱消值的QGt3,第6染色体上控制直链淀粉含量的QAc6,在2个不同土壤水分条件下均与环境存在显著互作,对环境互作的贡献率分别为8.99%和47.86%。控制直链淀粉含量的2对上位性QTLs与土壤水分环境显著互作,贡献率较大,分别为32.54%和11.82%。并筛选到5个主效QTL(QGt6b、QGt8、QGt11、QGc1和QPc2)在抗旱育种中可用于蒸煮和营养各品质性状MAS改良。  相似文献   

6.
Liu X  Wan X  Ma X  Wan J 《Génome》2011,54(1):64-80
Quantitative trait locus (QTL) mapping and stability analysis were carried out for 16 rice (Oryza sativa L.) quality traits across eight environments, by using a set of chromosome segment substitution lines with 'Asominori' as genetic background. The 16 quality traits include percentage of grain with chalkiness (PGWC), area of chalky endosperm (ACE), amylose content (AC), protein content (PC), peak viscosity, hot paste viscosity, cool paste viscosity, breakdown viscosity (BDV), setback viscosity (SBV), consistency viscosity, cooked-rice luster (LT), scent, tenderness (TD), viscosity, elasticity, and the integrated values of organleptic evaluation (IVOE). A total of 132 additive effect QTLs are detected for the 16 quality straits in the eight environments. Among these QTLs, 56 loci were detected repeatedly in at least three environments. Interestingly, several QTL clusters were observed for multiple quality traits. Especially, one QTL cluster near the G1149 marker on chromosome 8 includes nine QTLs: qPGWC-8, qACE-8, qAC-8, qPC-8a, qBDV-8a, qSBV-8b, qLT-8a, qTD-8a, and qIVOE-8a, which control PGWC, ACE, AC, PC, BDV, SBV, LT, TD, and IVOE, respectively. Moreover, this QTL cluster shows high stability and repeatability in all eight environments. In addition, one QTL cluster was located near the C2340 marker on chromosome 1 and another was detected near the XNpb67 marker on chromosome 2; each cluster contained five loci. Near the C563 marker on chromosome 3, one QTL cluster with four loci was found. Also, there were nine QTL clusters that each had two or three loci; however, their repeatability in different environments was relatively lower, and the genetic contribution rate was relatively smaller. Considering the correlations among all of the 16 quality traits with QTL cluster distributions, we can conclude that the stable and major QTL cluster on chromosome 8 is the main genetic basis for the effect of rice chalkiness, AC, PC, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice. Consequently, this QTL cluster is a novel gene resource for controlling rice high-quality traits and should be of great significance for research on formation mechanism and molecule improvement of rice quality.  相似文献   

7.
Anther culturability of rice is significantly different between indica and japonica varieties. A doubled haploid (DH) population was established via anther culture of an indica/japonica hybrid on SK3 medium, which had been shown particularly suitable for anther culture of indica/japonica hybrids. For analyzing the quantitative trait loci (QTLs) responsible for anther culturability, anthers of the DH lines were again cultured with SK3 medium and parameters for four traits representing the anther culturability were surveyed and analyzed with the molecular map constructed from the same DH population. The parameters for four major traits were as follows: callus induction frequency (CI), green plantlet differentiation frequency (GPD), albino plantlet differentiation frequency (APD), and green plantlet yield frequency (GPY). All four traits displayed continuous distributions among the DH lines. The correlation coefficients between these traits were also tested and showed that there was no relationship between callus induction and green plantlet differentiation frequencies, but both showed strong positive correlation with the frequency of green plantlet yield. For callus induction frequency, five QTLs were identified on chromosomes 6, 7, 8, 10 and 12. Two QTLs for green plantlet differentiation frequency were located on chromosomes 1 and 9. There was a major QTL for albino plantlet differentiation frequency on chromosome 9. No independent QTL was found for green plantlet yield frequency. The results may be useful in the selection of parents with high response to anther culture for rice haploid breeding and in the establishment of permanent DH populations for molecular mapping.  相似文献   

8.
A double haploid(DH)population,which consists of 120 lines derived from anther culture of a typical indica and japonica hybrid'CJ06'/'TN1',was used to investigate the genetic basis for rice leaffolder resistance.Using a constructed molecular linkage map,five QTLs for rolled leaves were detected on chromosomes 1,2,3,4,and 8.The positive alleles from C J06 on chromosomes 3,4,and 8 in-creased the resistance to dee leaffolder,and the alleles from TN1 on chromosomes 1 and 2 also enhanced resistance to leaffolder.The interactions between QTLs were identified and tested,and four conditional interactions were acquired for resistance to rice leaffolder.These loci were located on chromosomes 2,9,10,and 11,respectively.QTL pyramiding indicated that the positive alleles affect resis-tance to leaffolder.The prospective application of this data in rice breeding was also discussed.  相似文献   

9.
水稻花药培养力的遗传分析及基因定位   总被引:19,自引:4,他引:15  
何平  沈利爽 《遗传学报》1998,25(4):337-344
在栽培稻的籼粳亚种间,花药培养力存在显著差异,这一差异主要是由遗传因素引起的。以适合籼粳稻杂种花药培养的SK_3培养基,经花药培养获得了一个籼粳交F_1代的加倍单倍体(DH)群体,对该群体的110个株系用同一种培养基进行花药培养,利用该群体构建的分子图谱进行有关水稻花药培养力的数量性状基因座位(QTLs)的分析。结果表明,与水稻花药培养力有关的4个性状在DH群体中均表现为连续分布,愈伤组织诱导率与绿苗分化率之间不存在相关性,而绿苗产率与愈伤组织诱导率和绿苗分化率均显著相关。在第6、7、8、10和12 5条染色体上分别检测到与愈伤组织诱导率有关的5个QTLs,其加性效应均为正。在第1和第9染色体上检测到与绿苗分化率有关的2个QTLs,这两个性状间的QTs不存在连锁。在第9染色体上有一个主效基因与白苗分化率有关,对绿苗产率则没有检测到特有的QTL。  相似文献   

10.
染色体片段替换系(CSSL)是基因组水平快速初步定位数量性状基因座位(QTL)的良好材料,而水稻的品质性状是多基因控制的数量性状,因此可用替换系鉴定控制水稻品质性状的QTL。本文用分子标记辅助选择技术(MAS)构建了由133个株系组成的以‘特青’(籼稻品种)为轮回亲本,以海南的一种普通野生稻为供体亲本,覆盖绝大部分野生稻基因组的染色体片段替换系。利用这套替换系,初步定位了控制稻米外观和理化品质性状的15个QTL,为今后水稻品质性状QTL的克隆以及稻米品质相关性状的改良提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号