首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Morphological characteristics of fossil bagrid catfishes from six Miocene to Pleistocene localities in Japan are described. A new species of the Middle Miocene bagrid,Pseudobagrus ikiensis, is described, based on five nearly complete specimens (ca. 19 cm SL) and one half-body specimen from the Chojabaru Formation (15 Ma) of the Iki Group in Nagasaki Prefecture. The species is diagnosed by a unique combination of characters: 14–16 anal fin rays, 44–47 vertebrae, deeply forked caudal fin, pectoral spines with serrations on the anterior edge and supraoccipital process extending to the first pterygiophore of the dorsal fin.Pseudobagrus ikiensis is morphologically close to the extantP. fulvidraco, which is widely distributed in China, Siberia and the Korean Peninsula, suggesting that both lineages had appeared by the Middle Miocene. All other fossil specimens are from the Pliocene (3–4 Ma) Ueno Formation (lowest Kobiwako Group, Ohyamada, Mie Pref.) and Tokai Group (Tsu, Mie Pref.), and Pleistocene cave deposits (Inasa, Shizuoka Pref., Mine, Yamaguchi Pref. and Kanogawa, Ehime Pref.). These are incomplete, comprising mainly dorsal and pectoral spines. Being indistinguishable from the extantP. nudiceps, they are thus considered to be included in that lineage. Although the geological distribution of these Plio-Pleistocene fossils nearly overlaps that of the extantP. nudiceps (west of the Suzuka Mountains), fossil specimens have also been found in the Ise Bay area (Tsu), whereP. ichikawai is the only extant bagrid, and further east (Inasa). Based on evidence that the latter is not a sister species ofP. nudiceps, the distribution of the fossils indicates that the range ofP. nudiceps was restricted to west of the Suzuka Mts. during the Pleistocene or Holocene.  相似文献   

2.
A phylogeographic analysis of two bagrid catfishes in Taiwan was conducted using sequence data from a portion of the mitochondrial DNA (mtDNA) control region. For Pseudobagrus brevianalis, which is most probably endemic to Taiwan, a total of eight haplotypes were detected in 189 specimens from nine river systems covering its entire distribution range, from northern to central western areas of the island. Obvious genetic differentiation was observed among its populations (average F ST = 0.753); in particular, the northernmost Tamsui River population was fixed for a single endemic haplotype. Nested clade phylogeographic analysis (NCPA) indicated that the dispersal center of mtDNA was the area around the Touchien River and Holong River, north to the Miaoli Plateau, in northwestern Taiwan, suggesting both northward and southward dispersal in this species. There was no evidence for the validity of P. taiwanensis, the nominal species described from Taiwan, morphologically similar to P. brevianalis. We confirmed that P. adiposalis was distributed discontinuously in three river systems; analysis of 42 specimens from the rivers indicated a total of four haplotypes and population differentiation (average F ST = 0.876). Fixation into a largely differentiated haplotype in the northernmost Tamsui River population was also found in this species, but different processes for this phylogeographic pattern were implied for the two species. Comparison with P. ussuriensis, a widespread continental species morphologically similar to P. adiposalis, suggested the possibility that P. adiposalis is a group of local populations of P. ussuriensis in Taiwan. Two migration routes vs. random fixation scenarios for the population structure of P. adiposalis are discussed with information on other fishes and the geological history of the island.  相似文献   

3.
殷斯  郝转  陆飞东  高永 《广西植物》2023,43(11):2042-2054
研究野生作物资源的遗传变异及分化机制对种质资源的收集与改良具有重要意义。魔芋是我国西南地区的特色经济作物,但由于受到人为活动干扰,野生种群不断衰退。为评估西南地区魔芋属(Amorphophallus)野生群体的遗传多样性,探究代表性物种的系统发育地位,该研究利用3个叶绿体DNA(cpDNA)片段,分析了魔芋6个物种的遗传多样性,重建了种间系统发育关系。结果表明:(1)西南地区野生魔芋群体的遗传多样性普遍较低,虽然单倍型多样性(Hd)均值为0.428,但近一半群体只有1个单倍型,6个物种整体水平上的单倍型多样性在0.704到0.983之间。(2)在6个物种间检测到高水平的遗传分化,遗传分化系数(FST)值在0.481到0.967之间。(3)系统发育分析表明,选取的27个魔芋种主要聚成3个分支:非洲分支、东南亚分支和东亚大陆分支。疣柄魔芋(A. paeoniifolius)隶属于东南亚分支,而东亚大陆分支A包含花魔芋(A. konjac)和西盟魔芋(A. krausei),东亚大陆分支B由东亚魔芋(A. kiusianus)、滇魔芋(A. yunnanensis)和东京魔芋(A. tonkinensis)构成。生境隔离与人为干扰造成了西南地区野生魔芋群体较低的遗传多样性,魔芋属东亚大陆分支的分化可能与早期的快速扩张和生态适应有关。该研究为西南地区魔芋资源的合理保护、可持续利用和杂交育种提供了参考资料。  相似文献   

4.
Sequence variation in the mitochondrial cytochrome b gene was examined in the arboreal spiny rat, Mesomys hispidus, collected at 15 sites along the Rio Juruá in western Amazonia, Brazil, to determine the importance of riverine barriers in the diversification of this taxon. Twenty individual haplotypes were uncovered, most of which were unique to single localities but some of which were shared among adjacent sites either along or across the river. Genealogical analyses suggest that gene flow is limited and, in combination with the unique distribution of most haplotypes, suggest that populations of this species are strongly substructured along the river. Thus, most sharing of haplotypes between adjacent localities is probably caused by historical association rather than to ongoing gene flow. Two haplotype clades were uncovered, but these correspond to headwaters versus mouth areas, not to opposite sides of the river, as would be expected by the Riverine Barrier Hypothesis. Moreover, haplotype sharing across the river was greater at its mouth than in the headwaters, a pattern opposite that expected if the river were a substantive barrier. Broader scale phylogeographic patterns of this species show that both clades have relationships to areas well outside the Rio Juruá basin. This suggests that the basin represents a relatively recent point of invasion between two more broadly distributed and differentiated geographic units of the species.  相似文献   

5.
Mitochondrial DNA divergence among populations of the Japanese spinous loach Cobitis shikokuensis, endemic to Shikoku Island, was investigated by restricted fragment length polymorphism analysis. A total of 68 restriction sites on DNA fragments from the cytochrome b to D-loop regions and from the 12S rRNA to 16S rRNA regions, amplified by PCR, were analyzed. A total of 12 haplotypes (plus 6 in outgroups) were detected in 268 specimens collected from 19 localities in seven rivers (and 41 specimens from four localities in three rivers in outgroups). Three of the seven river populations of C. shikokuensis were shown to have unique haplotypes, and four of the seven river populations were monomorphic. The nested structure of the haplotype network for populations of C. shikokuensis exhibited two large clades corresponding to (1) populations from the Shimanto River and its neighbors and (2) two genetically divergent populations in the Shigenobu and Iwamatsu Rivers. The population from the Shimanto River, the largest river inhabited by C. shikokuensis, maintains great haplotype diversity as well as the allozyme diversity previously reported. On the other hand, populations from the Hiji River, the second largest river, which exhibited the highest allozyme diversity, were monomorphic in their mtDNA. The nested clade analysis (NCA) revealed that past fragmentation between the above two clades could occur in the initial distribution process of C. shikokuensis. The large genetic divergence of two river populations from the Shigenobu and Iwamatsu Rivers was inferred to be caused by a process of long distance colonization and fragmentation. MtDNA introgression into the Hiji River population from southern river populations was suggested. Taking genetic divergence into consideration, each river population of C. shikokuensis should be conserved separately as like a distinct species, and conservation programs for the small populations showing less genetic variability should be invoked as soon as possible.  相似文献   

6.
To estimate genetic differentiation and heterogeneity in the landlocked river sculpin,Cottus nozawae, between tributary populations in the same river-system, 107 specimens were captured from 5 tributaries of the Shiribetsu river (course length 128 km), Hokkaido Island and surveyed for allozyme variations and restriction fragment length polymorphisms of mitochondrial DNA (mtDNA). Three and two alleles were seen at theIdh-2 andPgm loci, respectively, but only one locus,Idh-2, out of twenty loci examined was regarded as polymorphic, since the frequency of the most common allele did not exceed 0.95. Three different mtDNA haplotypes were detected, there being replacement of them between the tributary populations. Heterogeneities of allele and haplotype frequencies were significant between some tributary populations, suggesting that genetic differentiation has occurred between them.  相似文献   

7.
Wild populations of the pustulose ark, Anadara tuberculosa (Bivalvia), an emblematic species of the East Pacific mangrove ecosystem declined in South American countries (Colombia, Ecuador, and Peru) mainly due to overharvesting and habitat loss or degradation. Understanding the genetic aspects of geographic variations and population structure of A. tuberculosa, currently unknown, appears as a priority to fishery authorities in order to elaborate integrated and collaborative conservation policies for fishery management, aquaculture, and stock enhancement programs. We used mtDNA sequence data to investigate haplotype diversity, genetic structure, and demography of A. tuberculosa. Results indicate genetic homogeneity of populations distributed north and south of the equator, respectively. However, statistically significant differentiation emerged between northern and southern populations with pairwise фST values ranging between 0.036 and 0.092. The oceanic current system acting in the area (Panama Current and Humboldt Current) might play a role in limiting the larval dispersal of the species, still poorly understood. Demography reconstruction supported recent population expansion, possibly started after last glacial maximum. Our results would suggest separate and independent management of populations north and south of the equator.  相似文献   

8.
Gymnodiptychus integrigymnatus is a critically endangered species endemic to the Gaoligongshan Mountains. It was thought to be only distributed in several headwater-streams of the Longchuanjiang River (west slope of the Gaoligongshan Mountains, belonging to the Irrawaddy River drainage). In recent years, dozens of G. integrigymnatus specimens have been collected in some streams on the east slope of the Gaoligongshan Mountains (the Salween drainage). We performed a morphological and genetic analyses (based on cytochrome b and D-loop) of the newly discovered populations of G. integrigymnatus to determine whether the degree of separation of these populations warrants species status. Our analysis from the cytochrome b gene revealed that nine individuals from the Irrawaddy drainage area and seven individuals from the Salween drainage area each have only one unique haplotype. The genetic distance between the two haplotypes is 1.97%. Our phylogenetic analysis revealed that G. integrigymnatus is closely related to highly specialized schizothoracine fishes. Analysis from the mitochondrial control region revealed that G. integrigymnatus has relatively high genetic diversity (π was 0.00891 and h was 0.8714), and individuals from different river drainages do not share the same haplotypes. The AMOVA results indicated 87.27% genetic variability between the Salween and Irrawaddy populations. Phylogenetic trees show two major geographic groups corresponding to the river systems. We recommend that G. integrigymnatus should be considered as a high priority for protected species status in the Gaoligongshan Mountains National Nature Reserve, and that the area of the Gaoligongshan Mountains National Nature Reserve should be expanded to cover the entire distribution of G. integrigymnatus. Populations of G. integrigymnatus from different river systems should be treated as evolutionarily significant units.  相似文献   

9.
 The fluvial sculpin, Cottus nozawae, is a coldwater-adapted fish distributed in Hokkaido Island and the northeastern part of Honshu Island (Tohoku District), Japan. Mitochondrial DNA (mtDNA) control region sequencing was used to investigate the geographic distribution of genetic variation and phylogeography of C. nozawae. Most populations possessed unique haplotypes, few being shared across river systems. Phylogenetic analysis of the sequences of the mtDNA control region and adjacent regions of C. nozawae revealed three distinct phylogenetic groups that differed by 3.05% to 3.11%, corresponding to distinct geographic regions, Hokkaido Island, northern Tohoku District, and Yamagata Prefecture (southwestern Tohoku District), respectively. The divergence times of three groups were estimated to be about 1.5 million years ago by applying a general rate for mtDNA, suggesting that the divergence among them might have occurred in the early Pleistocene. Divergence among the haplotypes within the group from the northern Tohoku District was also high (1.84%), no haplotypes being shared by local populations in different river systems in this region. Local populations from a single river system in this region comprise a distinct lineage that differed from other river systems. Such genetically divergent population structures among the different regions and river systems are considered to have resulted mainly from long-term isolation and restricted gene flow among river systems, probably promoted by the fluvial benthic life history and low dispersal ability of this species. Received: April 12, 2001 / Revised: December 1, 2001 / Accepted: December 19, 2001  相似文献   

10.
Genetic variation at mitochondrial cytochrome b (cyt b) and D-loop region reveals the evidence of population sub-structuring in Indian populations of highly endangered primitive feather-back fish Chitala chitala. Samples collected through commercial catches from eight riverine populations from different geographical locations of India were analyzed for cyt b region (307 bp) and D-loop region (636–716 bp). The sequences of the both the mitochondrial regions revealed high haplotype diversity and low nucleotide diversity. The patterns of genetic diversity, haplotypes networks clearly indicated two distinct mitochondrial lineages and mismatch distribution strongly suggest a historical influence on the genetic structure of C. chitala populations. The baseline information on genetic variation and the evidence of population sub-structuring generated from this study would be useful for planning effective strategies for conservation and rehabilitation of this highly endangered species.  相似文献   

11.
Dispersal triggers gene flow, which in turn strongly affects the ensuing genetic population structure of a species. Using nuclear microsatellite loci and mitochondrial DNA (mtDNA), we estimated the genetic population structure of the wasp Polistes olivaceus throughout Bangladesh. The level of population differentiation using nuclear markers (F ST) appeared to be much lower than that estimated using mtDNA haplotype sequences (ФST), even after correcting for effective population size differences between the two markers. These results suggest a philopatric tendency, in which gynes disperse less than males. We observed no isolation by distance among the study populations at either the nuclear or mtDNA level, suggesting nonequilibrium between gene flow and drift as a result of very frequent interpopulation movement. For the nuclear markers, an individual assignment test showed no genetically and geographically distinct groups. Instead, phylogenetic analyses as well as a minimum spanning network using mtDNA haplotypes consistently revealed two distinct lineages. The distribution of haplotypes indicated western populations with a single lineage and offered clear evidence for restricted gene flow across the Jamuna–Padma–Upper Meghna river system. Mismatch distributions exhibited a unimodal distribution, which along with a starlike haplotype network, suggested a population expansion in lineage I but not in lineage II. Overall, these results suggest that gene flow among populations of P. olivaceus was affected by both female philopatry and a major river system across Bangladesh.  相似文献   

12.
Selection and genetic drift can create genetic differences between populations. Cytokines and chemokines play an important role in both hematopoietic development and the inflammatory response. We compared the genotype frequencies of 45 SNPs in 30 cytokine and chemokine genes in two healthy Chinese populations and one Caucasian population. Several SNPs in IL4 had substantial genetic differentiation between the Chinese and Caucasian populations (F ST ~0.40), and displayed a strikingly different haplotype distribution. To further characterize common genetic variation in worldwide populations at the IL4 locus, we genotyped 9 SNPs at the IL4 gene in the Human Diversity Panel’s (N = 1056) individuals from 52 world geographic regions. We observed low haplotype diversity, yet strikingly different haplotype frequencies between non-African populations, which may indicate different selective pressures on the IL4 gene in different parts of the world. SNPs in CSF2, IL6, IL10, CTLA4, and CX3CR1 showed moderate genetic differentiation between the Chinese and Caucasian populations (0.15 < F ST < 0.25). These results suggest that there is substantial genetic diversity in immune genes and exploration of SNP associations with immune-related diseases that vary in incidence across these two populations may be warranted.  相似文献   

13.
The genetic structure of mangrove species is greatly affected by their geographic history. Nine natural populations of Ceriops tagal were collected from Borneo, the Malay Peninsula, and India for this phylogeographic study. Completely different haplotype compositions on the east versus west coasts of the Malay Peninsula were revealed using the atpB-rbcL and trnL-trnF spacers of chloroplast DNA. The average haplotype diversity (Hd) of the total population was 0.549, nucleotide diversity (θ) was 0.030, and nucleotide difference (π) was 0.0074. The cladogram constructed by the index of population differentiation (G ST) clearly separated the South China Sea populations from the Indian Ocean populations. In the analysis of the minimum spanning network, the Indian Ocean haplotypes were all derived from South China Sea haplotypes, suggesting a dispersal route of C. tagal from Southeast Asia to South Asia. The Sunda Land river system and surface currents might be accountable for the gene flow directions in the South China Sea and Bay of Bengal, respectively. The historical geography not only affected the present genotype distribution but also the evolution of C. tagal. These processes result in the genetic differentiation and the differentiated populations that should be considered as Management Units (MUs) for conservation measurements instead of random forestation, which might lead to gene mixing and reduction of genetic variability of mangrove species. According to this phylogeographic study, populations in Borneo, and east and west Malay Peninsula that have unique genotypes should be considered as distinct MUs, and any activities resulting in gene mixing with each other ought to be prevented.  相似文献   

14.
The notothenioid family Bathydraconidae is a poorly understood family of fishes endemic to the Southern Ocean. There is especially little information on Akarotaxis nudiceps, one of the deepest-dwelling and least fecund bathydraconid species. Using genetic and morphological data, we document and describe the larval stages of this unique species, offer a novel characteristic to distinguish it from the morphologically similar bathydraconid Prionodraco evansii and use the sampling locations to infer a possible spawning area of A. nudiceps along the western Antarctic Peninsula. These results provide important baseline information for locating, identifying and studying the biology of A. nudiceps, an important component of the Southern Ocean ecosystem.  相似文献   

15.
Genetic variability in random amplified polymorphic DNA (RAPD) was studied in 90 individuals of Caragana microphylla, an outcrossing perennial shrub species, from five natural populations sampled in Inner Mongolia steppe of China on a small scale. Nineteen selected primers were used to amplify DNA samples, and totally 225 bands were detected. The percentage of polymorphic bands within populations ranged form 58.22% to 63.56%, with an average of 60% at the population level and 71.11% at the species level, indicating relatively high genetic variations in C. microphylla species. Shannon’s information index (l) and Nei’s gene diversity (h) showed the similar trend with each other. According to the analysis of Nei’s gene diversity, the percentage of genetic variation among populations was 7.13%, indicating a low level of genetic differentiation among populations. There existed a strong gene flow (N m = 3.26) among populations. Although AMOVA analysis also revealed most variation was within populations (ΦST = 4.1%), a significant proportion was observed among populations (P < 0.001) in the present study, suggesting genetic differentiation occurred among populations at a certain extent. Based on Mantel’s tests and the results of previous studies, the genetic structure pattern of C. microphylla accorded with the isolation-by-distance model on a very large scale, however, on a small scale, the significant genetic differentiation among populations might be enhanced by the micro-environmental divergence among the sampling sites, rather than by geographic factors. Analysis of the genetic variations of C. microphylla populations provided useful information for the adaptive strategy of Caragana species.  相似文献   

16.
Aim We investigated whether the largest river (Mangoro) on the east coast of Madagascar acts as a barrier to dispersal in dung beetles by comparing species composition and genetic differentiation of the most common species on the two banks of the river. Moreover, by analysing the current geographical ranges of all wet forest dung beetle species, possible long‐term effects of the largest rivers on the distribution of species were assessed. Location Madagascar. Methods Dung beetles were sampled with baited pitfall traps at a downstream and an upstream locality on the two banks of the Mangoro River. The most common species, Nanos binotatus (Canthonini), was sequenced for cytochrome c oxidase subunit I (COI; 804 bp) to characterize within‐population diversity and between‐population genetic differentiation. For the analysis of species geographical range boundaries in relation to the position of the largest rivers on the east coast, a database including all the records for 158 wet forest species was used. The congruence of species range boundaries with the positions of the rivers was tested with a randomization test. Results All common species were found on both sides of the Mangoro River. In Nanos binotatus, haplotype and nucleotide diversities ranged from 0.25 to 0.85 and 0.001 to 0.01, respectively. Population differentiation was high and significant in all comparisons (P < 0.01; average FST = 0.61). The differentiation was not significantly higher across than along the river, as would be expected by the riverine barrier hypothesis. There was no indication that the range boundaries of wet forest dung beetle species would generally coincide with the largest rivers in eastern Madagascar. Main conclusions The results provide little support for the riverine barrier hypothesis as an explanation for the current range boundaries of dung beetles in eastern Madagascar. However, extensive deforestation of the coastal regions in eastern Madagascar may have caused a great shrinkage of the ranges of many forest‐dwelling species. Thus the present‐day distributions may not reflect accurately the patterns of the past geographical ranges of the species.  相似文献   

17.
Both a complex topography and climate change have huge impacts on the distribution and genetic structure of extant species. Due to the lack of relevant molecular research, little is definitively known about the phylogeography of herbaceous plants in East Asia. Here we investigate the genetic diversity, population structure and historical population dynamics of Iris dichotoma Pallas, a widespread perennial herbaceous species in northeastern and northern China. Twenty-nine populations, totalling 297 individuals, were sampled throughout the Chinese distributional range of I. dichotoma. The combined sequences of six chloroplast DNA fragments (petA-psbE, rps18-clpp, psbJ-petA, trnD-trnT, rps16 and ndhA) were used to identify 13 haplotypes, of which six were private ones restricted in a single population. Genetic differentiation among I. dichotoma populations, enabled us to infer potential refugia during the glacial period in the Yinshan Mountains–Yanshan Mountains, where high levels of haplotype and nucleotide diversity were detected. The results of a neutral test and mismatch distribution analysis both indicated that I. dichotoma underwent a recent population expansion. In East Asia, postglacial environmental and climatic changes appear to have promoted genetic diversification not only in better-studied woody species, but also in herbaceous ones like I. dichotoma. Future studies of more herbaceous plant species are needed to obtain better insight into how modern temperate biodiversity has developed in East Asia.  相似文献   

18.
The silver‐studded blue, Plebejus subsolanus, is widely distributed in the Russian Altai mountains, northeastern China, the Korean Peninsula, and the Japanese archipelago. In Japan, the species is distributed across wide elevation ranges from the lowlands of Hokkaido to the subalpine zone of Honshu. Current subspecies classification in Japan is as follows: ssp. iburiensis, occurring in lowland grasslands in Hokkaido; ssp. yaginus in lower mountain grasslands in Honshu; and ssp. yarigadakeanus in higher mountain grasslands in Honshu. The habitat of this species has been markedly reduced due to recent habitat destruction and land‐use changes. Here, we undertook phylogeographic analyses of two subspecies, ssp. yaginus and yarigadakeanus in the central mountainous regions of Japan, based on two mitochondrial gene sequences, in order to collect information for establishing effective conservation strategies. From 57 samples from the four mountain ranges, we obtained a haplotype network comprised of 12 haplotypes. Because of the haplotype network topology, the geographic distribution of haplotypes and the correspondence of haplotype divergence to subspecies taxonomy, we provisionally divided the haplotypes into three haplogroups: YR1 and YR2, which comprised ssp. yarigadakeanus, and YG, which comprised ssp. yaginus. Mitochondrial DNA genetic differentiation generally agreed with morphological subspecies classification. The haplotype network suggested that ssp. yarigadakeanus populations had multiple origins, and the subspecies character of “bright blue of the male's wings” was assumed to have evolved independently in each subalpine meadow. We found that P. subsolanus was genetically differentiated depending upon the elevation at each mountain region, suggesting that each haplogroup should be a conservation unit.  相似文献   

19.
Translocation of individuals among extant populations is an important tool in species conservation that allows managers to supplement dwindling populations and potentially alleviate the deleterious effects of inbreeding. Ideal translocation strategy should consider historical relationships among existing populations to avoid potential disruption of population subdivision and local adaptation. Here, we examine mitochondrial sequence variation in the endangered blue duck Hymenolaimus malacorhynchos, a New Zealand endemic riverine specialist, to facilitate informed decision making in future translocations. Behavioural observations suggest that blue duck dispersal is limited and may result in genetic structure within and between regional populations. We analysed 894 base pairs of mitochondrial control region in 78 adult blue ducks sampled from 11 river catchments across the species’ range (representing four regions in the North Island and three regions in the South Island) and found strong and significant genetic structure both within and among islands. These results, combined with a 2.0% sequence divergence between islands, indicates that North Island and South Island blue ducks should be treated as separate management units. The relationship between genetic differentiation and geographic distance for blue ducks on the South Island conformed to an “isolation by distance” pattern. Overall, we recommend that translocations of blue ducks should not be made between the North and the South Islands and those within each island should be restricted to neighbouring catchments.  相似文献   

20.
Labeo rohita, popularly known as rohu is a widely cultured species in the whole Indian subcontinent. Knowledge of the genetic diversity of this species is important to support management and conservation programs which will subsequently help in sustainable production of this species. DNA markers, mostly microsatellite markers are excellent tool to evaluate genetic variation of populations. Genetic variation of three wild and one farm population was assessed using eleven microsatellite loci. In analyzing 192 samples, the number of alleles ranged from 4 to 23; observed heterozygosity 0.500 to 0.870 and expected heterozygosity from 0.389 to 0.878. Exact test for Hardy Weinberg disequilibrium revealed that each riverine sample had at least one locus not in equilibrium except one river. Negative inbreeding coefficients (FIS) were observed across populations indicating very high level of genetic diversity but little genetic differentiation among populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号