首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
D McVey  B Woelker    P Tegtmeyer 《Journal of virology》1996,70(6):3887-3893
Previous studies have shown that phosphorylation of simian virus 40 (SV40) T antigen at threonine 124 enhances the binding of T antigen to the SV40 core origin of replication and the unwinding of the core origin DNA via hexamer-hexamer interactions. Here, we report that threonine 124 phosphorylation enhances the interaction of T-antigen amino acids 1 to 259 and 89 to 259 with the core origin of replication. Phosphorylation, therefore, activates the minimal DNA binding domain of T antigen even in the absence of domains required for hexamer formation. Activation is mediated by only one of three DNA binding elements in the minimal DNA binding domain of T antigen. This element, including amino acids 167, 215, and 219, enhances binding to the unique arrangement of four pentanucleotides in the core origin but not to other pentanucleotide arrangements found in ancillary regions of the SV40 origin of replication. Interestingly, the same four pentanucleotides in the core origin are necessary and sufficient for phosphorylation-enhanced DNA binding. Further, we show that phosphorylation of threonine 124 promotes the assembly of high-order complexes of the minimal DNA binding domain of T antigen with core origin DNA. We propose that phosphorylation induces conformational shifts in the minimal DNA binding domain of T antigen and thereby enhances interactions among T-antigen subunits oriented by core origin pentanucleotides. Similar subunit interactions would enhance both assembly of full-length T antigen into binary hexamer complexes and origin unwinding.  相似文献   

2.
SV40 T antigen is the initiator protein of SV40 DNA replication. We examined the interaction of purified SV40 T antigen with phospholipids by (i) centrifugation analysis with phospholipid vesicles, (ii) filter binding assay and footprint analysis of T antigen binding to the replication origin of SV40 DNA and (iii) analysis of the initiation of SV40 DNA replication in vitro. In all cases, cardiolipin showed affinity for T antigen and inhibited its DNA binding capacity. Phosphatidylglycerol with unsaturated fatty acids also inhibited the binding of T antigen to the replication origin of SV40 DNA, whereas phosphatidylglycerol with saturated fatty acids did not. This finding suggested the importance of unsaturated fatty acids for the interaction of T antigen with phospholipids. Other phospholipids including phosphatidylserine, phosphatidylinositol and phosphatidylethanolamine showed little or no affinity for T antigen.  相似文献   

3.
The initiation of simian virus 40 (SV40) DNA replication is regulated by the phosphorylation state of the viral initiator protein, large T antigen. We describe the purification from HeLa cell nuclei of a 35-kDa serine/threonine protein kinase that phosphorylates T antigen at sites that are phosphorylated in vivo and thereby inhibits its ability to initiate SV40 DNA replication. The inhibition of both origin unwinding and DNA replication by the kinase is reversed by protein phosphatase 2A. As determined by molecular weight, substrate specificity, autophosphorylation, immunoreactivity, and limited sequence analysis, this kinase appears to be identical to casein kinase I, a ubiquitous serine/threonine protein kinase that is closely related to a yeast kinase involved in DNA metabolism. The HeLa cell phosphorylation cycle that controls the initiation of SV40 DNA replication may also play a role in cellular DNA metabolism.  相似文献   

4.
A peptide encompassing the N-terminal 82 amino acids of simian virus 40 (SV40) large T antigen was previously shown to bind to the large subunit of DNA polymerase alpha-primase (I. Dornreiter, A. Höss, A. K. Arthur, and E. Fanning, EMBO J. 9:3329-3336, 1990). We report here that a mutant T antigen, T83-708, lacking residues 2 to 82 retained the ability to bind to DNA polymerase alpha-primase, implying that it carries a second binding site for DNA polymerase alpha-primase. The mutant protein also retained ATPase, helicase, and SV40 origin DNA-binding activity. However, its SV40 DNA replication activity in vitro was reduced compared with that of wild-type protein. The reduction in replication activity was accompanied by a lower DNA-binding affinity to SV40 origin sequences and aberrant oligomerization on viral origin DNA. Thus, the first 82 residues of SV40 T antigen are not strictly required for its interaction with DNA polymerase alpha-primase or for DNA replication function but may play a role in correct hexamer assembly and efficient DNA binding at the origin.  相似文献   

5.
A mutant simian virus 40 (SV40) large tumor (T) antigen bearing alanine instead of threonine at residue 124 (T124A) failed to replicate SV40 DNA in infected monkey cells (J. Schneider and E. Fanning, J. Virol. 62:1598-1605, 1988). We investigated the biochemical properties of T124A T antigen in greater detail by using purified protein from a baculovirus expression system. Purified T124A is defective in SV40 DNA replication in vitro, but does bind specifically to the viral origin under the conditions normally used for DNA replication. The mutant protein forms double-hexamer complexes at the origin in an ATP-dependent fashion, although the binding reaction requires somewhat higher protein concentrations than the wild-type protein. Binding of T124A protein results in local distortion of the origin DNA similar to that observed with the wild-type protein. These findings indicate that the replication defect of T124A protein is not due to failure to recognize and occupy the origin. Under some conditions T124A is capable of unwinding short origin DNA fragments. However, the mutant protein is almost completely defective in unwinding of circular plasmid DNA molecules containing the SV40 origin. Since the helicase activity of T124A is essentially identical to that of the wild-type protein, we conclude that the mutant is defective in the initial opening of the duplex at the origin, possibly as a result of altered hexamer-hexamer interactions. The phenotype of T124A suggests a possible role for phosphorylation of threonine 124 by cyclin-dependent kinases in controlling the origin unwinding activity of T antigen in infected cells.  相似文献   

6.
K L Collins  A A Russo  B Y Tseng    T J Kelly 《The EMBO journal》1993,12(12):4555-4566
DNA polymerase alpha is the only enzyme in eukaryotic cells capable of starting DNA chains de novo and is required for the initiation of SV40 DNA replication in vitro. We have cloned the 70 kDa subunit of human DNA polymerase alpha (hereafter referred to as the B subunit) and expressed it as a fusion protein in bacteria. The purified fusion protein forms a stable complex with SV40 T antigen, both in solution and when T antigen is bound to the SV40 origin of DNA replication. Analysis of mutant forms of the B subunit indicates that the N-terminal 240 amino acids are sufficient to mediate complex formation. The B subunit fusion protein promotes formation of a complex containing T antigen and the catalytic subunit (subunit A) of DNA polymerase alpha, suggesting that it serves to tether the two proteins. These physical interactions are functionally significant, since the ability of T antigen to stimulate the activity of the catalytic subunit of DNA polymerase alpha is highly dependent upon the B subunit. We suggest that the interactions mediated by the B subunit play an important role in SV40 DNA replication by promoting DNA chain initiation at the origin and/or facilitating the subsequent priming and synthesis of DNA chains on the lagging strand template. The protein may play similar roles in cellular DNA replication.  相似文献   

7.
The DNA helicase activity associated with purified simian virus 40 (SV40) large tumor (T) antigen has been examined. A variety of DNA substrates were used to characterize this ATP-dependent activity. Linear single-stranded M13 DNA containing short duplex regions at both ends was used to show that SV40 T antigen helicase displaced the short, annealed fragment by unwinding in a 3' to 5' direction. Three different partial duplex structures consisting of 71-, 343-, and 851-nucleotide long fragments annealed to M13 single-stranded circular DNA were used to show that SV40 T antigen can readily unwind short and long duplex regions with almost equal facility. ATP and MgCl2 were required for this reaction. With the exception of GTP, dGTP, and CTP, the other common nucleoside triphosphates substituted for ATP with varied efficiency, while adenosine 5'-O-(thiotriphosphate) was inactive. The T antigen helicase activity was also examined using completely duplex DNA fragments (approximately 300 base pairs) with or without the SV40 origin sequence as substrates. In reactions containing small amounts (0.6 ng) of DNA, the ATP-dependent unwinding of duplex DNA fragments occurred with no dependence on the origin sequence. This reaction was stimulated 5- to 6-fold by the addition of the Escherichia coli single-stranded DNA-binding protein. When competitor DNA was added so that the ratio of SV40 T antigen to DNA was reduced 1000-fold, only DNA fragments containing a functional SV40 origin of replication were unwound. This reaction was dependent on ATP, MgCl2, and a DNA-binding protein, and was stimulated by inorganic phosphate or creatine phosphate. The origin sequence requirements for the unwinding reaction were the same as those for replication (the 64-base pair sequence present at T antigen binding site 2). Thus, under specified conditions, only duplex DNA fragments containing an intact SV40 core origin were unwound. In contrast, unwinding of partially duplex segments of DNA flanked by single-stranded regions can occur with no sequence specificity.  相似文献   

8.
Hypoxia interrupts the initiation of simian virus 40 (SV40) replication in vivo at a stage situated before unwinding of the origin region. After re-oxygenation, unwinding followed by a synchronous round of viral replication takes place. To further characterize the hypoxia-induced inhibition of unwinding, we analysed the binding of several replication proteins to the viral minichromosome before and after re-oxygenation. T antigen, the 34-kDa subunit of replication protein A (RPA), topoisomerase I, the 48-kDa subunit of primase, the 125-kDa subunit of polymerase delta, and the 37-kDa subunit of replication factor C (RFC) were present at the viral chromatin already under hypoxia. The 70-kDa subunit of RPA, the 180-kDa subunit of polymerase alpha, and proliferating cell nuclear antigen (PCNA) were barely detectable at the SV40 chromatin under hypoxia and significantly increased after re-oxygenation. Immunoprecipitation of minichromosomes with T antigen-specific antibody and subsequent digestion with micrococcus nuclease revealed that most of the minichromosome-bound T antigen was associated with the viral origin in hypoxic and in re-oxygenated cells. T antigen-catalysed unwinding of the SV40 origin occurred, however, only after re-oxygenation as indicated by (a) increased sensitivity of re-oxygenated minichromosomes against digestion with single-stranded DNA-specific nuclease P1; (b) stabilization of RPA-34 binding at the SV40 minichromosome; and (c) additional phosphorylations of RPA-34 after re-oxygenation, probably catalysed by DNA-dependent protein kinase. The results presented suggest that the subunits of the proteins necessary for unwinding, primer synthesis and primer elongation first assemble at the SV40 origin in form of stable, active complexes directly before they start to work.  相似文献   

9.
M Montenarh  D Müller 《FEBS letters》1987,221(2):199-204
SV40 large T antigen is phosphorylated at up to ten different amino acids clustered in an N-terminal and a C-terminal part of the polypeptide chain. The N-terminal phosphorylated residues include Ser 123 and Thr 124. We have analyzed the oligomerization, the complex formation with the cellular oncoprotein p53 and the DNA-binding properties of T antigen from two different SV40 transformed cell lines which have either an amino acid exchange at Ser 123 to Phe (W7) or Thr 124 to Ile (D29). In comparison to wild-type T antigen both mutant T antigens have a slightly reduced binding affinity for both binding sites, I and II, of SV40 DNA. Phosphorylation at both residues of T antigen is not essential for formation of the complex with p53. Only the phosphorylation at Thr 124 seems to be critical for the formation of high molecular mass oligomers. Our data support the hypothesis that the oligomerization of T antigen seems to be implicated in viral DNA replication.  相似文献   

10.
Simian virus 40 large T antigen untwists DNA at the origin of DNA replication.   总被引:18,自引:0,他引:18  
Simian virus 40 large tumor antigen (SV40 T antigen) untwists DNA at the SV40 replication origin. In the presence of ATP, T antigen shifted the average linking number of an SV40 origin-containing plasmid topoisomer distribution. The loss of up to two helical turns was detected. The reaction required the presence of the 64-base pair core origin of replication containing T antigen DNA binding site II; binding site I had no effect on the untwisting reaction. The presence of human single-stranded DNA binding protein (SSB) slightly reduced the degree of untwisting in the presence of ATP. ATP hydrolysis was not required since untwisting occurred in the presence of nonhydrolyzable analogs of ATP. However, in the presence of a nonhydrolyzable analog of ATP, the requirement for the SV40 origin sequence was lost. The origin requirement for DNA untwisting was also lost in the absence of dithiothreitol. The origin-specific untwisting activity of T antigen is distinct from its DNA helicase activity, since helicase activity does not require the SV40 origin but does require ATP hydrolysis. The lack of a requirement for SSB or ATP hydrolysis and the reduction in the pitch of the DNA helix by just a few turns at the replication origin distinguishes this reaction from the T antigen-mediated DNA unwinding reaction, which results in the formation of a highly underwound DNA molecule. Untwisting occurred without a lag after the start of the reaction, whereas unwound DNA was first detected after a lag of 10 min. It is proposed that the formation of a multimeric T antigen complex containing untwisted DNA at the SV40 origin is a prerequisite for the initiation of DNA unwinding and replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号