首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although deforestation continues to be a major threat to tropical biodiversity, abandonment of agricultural land in Puerto Rico provides an opportunity to study long-term patterns of secondary forest regeneration. Using aerial photographs from 1937, 1967, and 1995, we determined land-use history for 2443 ha in the Cayey Mountains. Pastures were the dominant land cover in 1937 and <20% of the area was classified as forest. Between 1937 and 1995, forest cover increased to 62% due to widespread abandonment of agriculture. To examine the effect of historic land use on current forest structure and species composition, we sampled secondary forests in 24 abandoned pastures, 9 abandoned coffee plantations and 4 old-growth forest sites. Sites were located on two soil types along an elevational gradient (125–710 m) and included a chronosequence from 4 to over 80 years old. After 25–30 years, basal area and species richness in secondary forest sites derived from abandoned pastures and coffee plantations were similar to old-growth forest sites. The species composition of secondary forests derived from abandoned pastures and coffee plantations remained distinct from old-growth forest. In addition to historic land use, age and elevation were important environmental variables explaining variation in secondary forest species composition. Non-indigenous species were common in recently abandoned pastures and coffee plantations, but their importance declined in the older sites. This study demonstrates that secondary forests on private land can be an important component of the conservation of tropical tree biodiversity. Received 16 June 1999; Accepted 8 October 1999.  相似文献   

2.
We censused breeding birds for three years in natural landscape mosaics of virgin old-growth spruce forest and mire in a large protected forest area in northern Sweden Twenty forest patches, ranging from 0 2 to 17 8 ha in size, were selected in two matrix types, dominated by forest and mire, respectively Patches were very similar with regards to habitat features There was a strong effect of patch area on species richness, but no effect of matrix type Standardization of species richness by rarefaction revealed that small patches (<5 ha) had fewer and large patches (>10 ha) more species than expected Overall distribution of species across patches showed a highly significant nested pattern, indicating that a few habitat generalists occupy all size classes, whereas more demanding species avoid small patches regardless of landscape composition Individual species tended to be distributed evenly across patch classes and no significant edge effect in terms of density of birds was found Our results have bearings on actions to preserve avian diversity in northern boreal forests small patches (<5 ha) provide habitat only for habitat generalists, and therefore larger (>10 ha) patches should be preserved  相似文献   

3.
Secondary forests are a vital part of the tropical landscape, and their worldwide extent and importance continues to increase. Here, we present the largest chronosequence data set on forest succession in the wet tropics that includes both secondary and old-growth sites. We performed 0.1 ha vegetation inventories in 30 sites in northeastern Costa Rica, including seven old-growth forests and 23 secondary forests on former pastures, ranging from 10 to 42 yr. The secondary forest sites were formerly pasture for intervals of <1–25 yr. Aboveground biomass in secondary forests recovered rapidly, with sites already exhibiting values comparable to old growth after 21–30 yr, and biomass accumulation was not impacted by the length of time that a site was in pasture. Species richness reached old-growth levels in as little as 30 yr, although sites that were in pasture for > 10 yr had significantly lower species richness. Forest cover near the sites at the time of forest establishment did not significantly impact biomass or species richness, and the species composition of older secondary forest sites (>30 yr) converged with that of old growth. These results emphasize the resilience of tropical ecosystems in this region and the high conservation value of secondary forests.
  相似文献   

4.
Hummingbirds are important pollinators of many native Neotropical plants but their abundance and diversity in landscapes dominated by intensive human uses such as agriculture have rarely been examined, despite such land‐uses prevailing in the tropics. We examined how tropical deforestation affects hummingbird community structure in premontane forest patches embedded in a tropical countryside of Coto Brus Canton, Costa Rica. We captured hummingbirds in fourteen landscapes representing a gradient in patch size and forest amount, and tested for the effects of these variables on (1) hummingbird captures at flowers (pollinator availability); (2) species richness; and (3) filtering of functional traits. After accounting for sampling effects, both hummingbird availability and species richness declined by 40% and 50%, respectively, across the gradient in deforestation that we observed (9–66% forest within 1000 m). Focal patch size was the strongest predictor, even after statistically accounting for the amount of forest and matrix composition of landscapes. These reductions in availability and richness were well predicted by functional traits; morphologically specialized species with the capacity to transport long‐distance outcrossed pollen and low functional redundancy within the pollinator network showed the greatest sensitivity to landscape change. We hypothesize that declines in hummingbird availability, diversity, and functional traits are important mechanisms driving the observed pollen limitation of ornithophilous flowers in fragmented tropical landscapes. Efforts to conserve large forest patches and enhance matrix permeability are critical for maintaining forest hummingbird communities and pollination services under current and predicted deforestation regimes.  相似文献   

5.
Woodland key habitats (WKHs) form a network of local biodiversity hotspots in human-dominated landscapes of northern Europe. They have been designated based on the presence of old-growth species and structures, and are considered to indicate long-term forest cover. To test whether WKHs do particularly occur in continuous forest land and to explore the scale dependence of relationships between WKH presence and their historical and environmental properties, we analysed them at five spatial scales (from stand to landscape: 80–2500 m) and referring to four reference years (1790, 1860, 1910, and 2010) using univariate and multivariate analyses. We upscaled the georeferenced data using a moving window approach. The study area encompassed 94,886 contiguous forest stands in a boreo-nemoral region of southern Latvia (5178 km2) with a relatively short history of intensive land use. At the scale of stands, the presence of WKHs, ranging from 0.1 to 59 ha in size, best corresponded to highly variable land-use histories 100–220 years ago such as natural succession on abandoned land, drained bogs and wetlands, and only partly to continuous forest cover for more than 220 years. We identified short-term (50–70 years) and small-scale (up to 250 m) gaps in past forest cover as significant positive predictors of WKH presence, which resemble patterns caused by natural disturbances. At broader scales (800–2500 m), best explanatory variables were the presence of old forest fragments throughout the landscape, at least 100 years of continuous forest cover, changes in forest cover, i.e., afforestation, between 1790 and 1860, and the proximity to bogs and rivers. We also found that correlations between WKH presence and forest patch density converted from negative coefficients at small spatio-temporal scales to positive ones at broader spatio-temporal scales. Our results highlight the importance of using multi-scale information on land-use history to improve both the understanding and the management of biodiversity in cultural landscapes. In brief, instead of long-term continuous forest cover, we found a surprisingly diverse and dynamic land-use history in places that have been designated as WKHs.  相似文献   

6.
A major question in fungal conservation is why many species are confined to old forests, and how they could be supported by contemporary landscape matrix. Specifically, forestry that retains large biological legacies across landscape could reduce old-forest dependencies to species that require unusual substrate conditions. We sampled polypores in 112 2 ha plots (both old and harvested stands) in a semi-natural forestry context in Estonia and modelled the habitat factors of species confined to old growth. The results confirmed that old-growth assemblages emerged mostly due to diverse and abundant substrate supply (notably downed CWD). Only 10 species (five spruce-dwellers) were confined to old growth; of these, only Fomitopsis rosea and Oxyporus corticola were additionally affected by forest connectivity. The forestry system studied appeared particularly favourable for the species inhabiting deciduous wood. To better address habitat degradation in conservation, expert lists of ‘old-forest (indicator) fungi’ should be replaced with evidence-based focal taxa.  相似文献   

7.
Fragmentation of the forested landscape poses a threat to many aspects of biodiversity associated with old-growth forests Studies of the effects of forest fragmentation are often complicated by the variation in composition and age of patches and the matrix This study used a system of isolated stands where patch age and composition were similar and the matrix variability negligible The patches were composed of old-growth Picea abies stands of varying size and shape in a wetland matrix The study organisms were epiphytic crustose calicioid lichens (also known as Caliciales), many of which are very substrate-specific and restricted to old-growth stands The aim of the study was to measure the effect of patch size, patch isolation, habitat and substrate quality on the species riochness and composition of epiphytic calicioids Twenty-four patches ranging from 0 4 to 15 9 ha in size were studied All species of calicioid lichens were registered in 0 1 ha plots in each patch Isolation was measured as the percentage of available habitat within 400 m of a patch Twenty-two species were found with an average of 9 48 ± 0 26 (SE) species per patch and 292 ± 0 18 (SE) species per tree Species richness at patch level correlated with stand structure, primarily tree density, while number of species per tree (reflecting population size) was strongly correlated with island size and several stand variables There was no effect of isolation on species richness Species composition was influenced by both substrate variables and patch size The species composition on the islands showed a significant nestedness, i e species composition on species-poor islands constituted a non-random subset of the species composition on species-rich islands We propose that the explanation for the strong relationship between species richness at tree level and stand size is an edge effect which implies that unaffected interior areas only occur on large islands The different microclimate of the patch edge enables only the hardiest species to establish large populations there whilst shade and moisture demanding species are restricted to the interiors of larger islands  相似文献   

8.
In this study, we compared ground-dwelling beetle assemblages (Coleoptera) from a range of different oak fragments and surrounding conifer plantations to evaluate effects of forest size and surrounding matrix habitat in a temperate forest of north China. During 2000, beetles were sampled via pitfall traps within two large oak fragments (ca. 2.0-4.0 ha), two small oak fragments (ca. 0.2-0.4 ha) and two surrounding matrices dom- inated by pine plantations (〉4 ha) in two sites of different aspects. Overall, no significantly negative effects from forest patch size and the surrounding matrix habitat were detected in total species number and abundance of ground-dwelling beetles. However, compared with small oak patches or pine plantations, more species were associated with an affinity for at least one large oak patch of the two aspects. Multivariate regression trees showed that the habitat type better determined the beetle assemblage structure than patch size and aspect, indicating a strong impact of the surrounding matrix. Linear mixed models indicated that species richness and abundance of all ground-dwelling beetles or beetle families showed different responses to the selected environmental variables. Our results suggest that more disturbed sites are significantly poorer in oak forest specialists, which are usually more abundant in large oak fragments and decrease in abundance or disappear in small fragments and surrounding matrix habitats. Thus, it is necessary to preserve a minimum size of forest patch to create conditions characteristic for forest interior, rather than the more difficult task of increasing habitat connectivity.  相似文献   

9.
Abstract Understanding patterns and processes of habitat change is essential for managing and conserving forest fragments in anthropogenically altered landscapes. Digitized aerial photographs from 1944 and 1996 were examined for changes to the indigenous forest landscape in the Karkloof‐Balgowan archipelago in KwaZulu–Natal, South Africa. Attributes relating to proximate land‐use, patch shape, isolation and position in the landscape were used to determine putative causes of forest change. The total change in forest area was ?5.7% (forest covered 6739 ha in 1996). This is contrasted with previous reports for the period 1880–1940 that estimated change in total forest area of up to ?80%. Attrition was the predominant process of forest transformation between 1944 and 1996. Despite little overall change in forest area, 786 mostly small (<0.5 ha) forest patches were lost from the landscape, leaving 1277 forest patches in 1996. An increase in patch isolation, but no change in patch cohesion accompanied the changes in forest area. Ignoring patches that were eliminated, 514 patches decreased in area. This was partly a function of patch size, but the conversion of natural grassland to commercial plantation forestry in the matrix also influenced forest decline. Their small size and irregular shape caused forest patches in the region to be vulnerable to edge effects. Core area declined in a negative exponential way with increasing edge width and the total area of edge habitat exceeded that of core habitat at an edge width of only 50 m. Nevertheless, total core area decreased by only 2% (65 ha) between 1944 and 1996 because most of the eliminated patches were small and contained no core area. The large Karkloof forest (1649 ha) is a conservation priority for forest interior species, but the ecological role and biodiversity value of small forest patches should not be overlooked.  相似文献   

10.
Abstract

Old-growth forests in south eastern Australia are important for biodiversity conservation, recreation, carbon storage, social values and, to a declining extent, for timber production. Developing a comprehensive definition of old-growth forest that can apply across all Australian vegetation types has been challenging. Old growth can be viewed from ecological and social perspectives. For policy and management purposes old growth has been defined as a growth stage in forest development, incorporating ecological maturity and lack of evidence of past disturbance. Classification and assessment of old growth has largely been restricted to those areas covered by regional forest agreements (RFAs) between different states and the Federal Government. Old growth can be impacted by wildfire, timber harvesting, insect pests, diseases and other disturbances. Climate change will also present challenges for the future management of old-growth forests. There is increasing scientific understanding of the relationships between species, forest growth stage and old-growth forest attributes. To meet biodiversity conservation objectives, the management focus is shifting from assessing and protecting old-growth forests, to providing for forests across the landscape with old-growth attributes. This approach may be at odds with other conceptions of old growth based on notions of undisturbed systems free of human influence.  相似文献   

11.
社区水平森林景观格局动态特征与驱动因素   总被引:1,自引:0,他引:1  
唐利  邵景安  郭跃  邓华  薛沛沛 《生态学报》2017,37(6):2101-2117
基于高分辨率SPOT-5影像、TM影像和农户调查数据,以及相关辅助数据,选取三峡库区典型森林大县石柱县三星乡石星村为样区,利用景观格局指数与Logistic回归分析法,对1994—2014年间的森林景观格局的动态特征及其影响因素进行分析,旨在丰富人们对社区水平森林景观格局动态的理解和认识,为森林景观恢复和可持续经营策略的制定提供科学依据。结果表明:(1)样区森林景观一直占据20年间景观基质的主导地位,空间分布上退化原始林主要集中分布在中东部低山、深丘区,次生林、退化林地和人工林呈镶嵌格局,分散于主要基质性景观中;(2)20年间样区森林景观整体呈先减少后增加的"U"型格局,表现为1994—2004年间的退化与2004—2014年间的恢复两个截然相反的过程,且这一过程主要发生在森林景观与水田、旱地、居民点、道路等接壤区;(3)2004—2014年间森林景观的演化趋势与1994—2004年间整体上呈反向趋势,空间格局上,这一阶段森林景观的恢复主要出现在1994—2004年间森林景观所发生退化的区域;(4)20年间样区森林景观在斑块水平上呈明显异质性分布,3个截面年份不同森林景观破碎化程度的总排序均为退化林地人工林次生林退化原始林,且退化原始林、次生林和退化林地的破碎度变化趋势相同,均为先增后减;(5)20年间样区森林景观在景观水平上的破碎度呈现先增强后减弱趋势,且2014年的破碎化程度恢复至低于1994年的水平,进一步说明在退化后的森林景观恢复过程中,生态完整性的恢复速度远低于破碎速度;(6)社会经济因素对20年间样区森林景观变化的影响最突出,其中,最主要的影响因素是人口密度变化,先增后减的变化使生态压力随之增减,进而导致森林景观的退化与恢复。其次是农民人均纯收入变化,特别是2004—2014年农民人均纯收入的增加,促进能源结构的转型,减少了对森林景观的依赖和干扰。空间距离对森林景观的影响具有稳定的持续作用,居民对森林景观的干扰多经由距离因素而实现。自然因素控制大地貌格局,中短时期内对森林景观变化影响不大,次生林和退化林地因处于适宜开发的边缘地带,受自然环境影响较大。  相似文献   

12.
Relatively little information exists on neotropical secondary rain forests that have progressed beyond the pioneer stages of succession, or on the potential of natural regeneration to restore forest on large areas. We determined the structural and floristic characteristics (10 cm dbh) of a 30‐year‐old secondary forest developing on a 32.5 ha pasture on hilly terrain, abandoned after use of moderate intensity. Ten 0.24 ha sample plots covered the range of site conditions. The forest was dominated by long‐lived pioneer tree species; overall, the majority of species (70%) was vertebrate dispersed but the majority of individuals (52%) was of wind‐dispersed species. Tree species, including the dominants, were a mixture of those present in old‐growth and adventives colonizing from agricultural land. The forest was very heterogeneous. Vochysia ferruginea‐dominated stands characterized slopes with soils of high exchangeable acidity, while the adventive Cordia alliodora dominated sites with gentler topography and soils of lower acidity. Structural differences between the two forest types were slight, but Cordia forest had significantly greater species diversity and absolute and relative abundances of vertebrate‐dispersed tree species than Vochysia forest, which had significantly greater absolute and relative abundances of wind‐dispersed tree species. These latter differences between forest types, as well as the wide structural variation of the forest as a whole, were probably largely due to spatial and temporal variation in seed rains, some of it linked to the characteristics of the dominant species. Rain forest restoration on large pastures may depend greatly on wind dispersal and adventive tree species, and techniques for silvicultural diagnosis must be developed as a basis for the management of heterogeneous successional stands. Studies of early colonization of pastures should be expanded to focus on the causes of heterogeneity in older forests.  相似文献   

13.
Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space‐borne optical (Landsat), ALOS‐PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest—agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR‐derived forest structure and Landsat‐derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the avian species. This work also provides insight that retention of forest patches, including degraded and isolated forest patches in addition to large contiguous forest patches, can facilitate bird species retention within tropical agricultural landscapes. It also demonstrates the effective use of RS data in distinguishing between forests that have undergone varying levels of degradation and identifying the habitat preferences of different bird species. Practical conservation management planning endeavors can use such data for both landscape scale monitoring and habitat mapping.  相似文献   

14.
The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at ‘local’ and ‘landscape’ scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the ‘ancient forest species’), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.  相似文献   

15.
Tropical rainforests in Southeast Asia are facing increasing and ever more intense human disturbance that often negatively affects biodiversity. The aim of this study was to determine how tree species phylogenetic diversity is affected by traditional forest management types and to understand the change in community phylogenetic structure during succession. Four types of forests with different management histories were selected for this purpose: old growth forests, understorey planted old growth forests, old secondary forests (∼200-years after slash and burn), and young secondary forests (15–50-years after slash and burn). We found that tree phylogenetic community structure changed from clustering to over-dispersion from early to late successional forests and finally became random in old-growth forest. We also found that the phylogenetic structure of the tree overstorey and understorey responded differentially to change in environmental conditions during succession. In addition, we show that slash and burn agriculture (swidden cultivation) can increase landscape level plant community evolutionary information content.  相似文献   

16.
黑龙江林口林业局森林景观格局特征   总被引:3,自引:0,他引:3  
以黑龙江林口林业局1∶50000林相图作为基本信息源,利用地理信息系统软件ArcView和景观结构分析软件Fragstats,从景观格局的总体特征、景观破碎度、景观形状指数、分形维数和平均最近距离等方面,对该林业局的景观格局进行了分析.结果表明:该林业局以森林景观为主体(56.74%),居民点和农田景观也占有较高比例,而沼泽、灌木、荒山荒地、河流、迹地和裸地等景观零星分布于森林景观中;该林业局的森林景观主要以人工针叶纯林(40.47%)和天然蒙古栎林(20.96%)为主,斑块分布集中、形状复杂、边缘褶皱度高.人工林与天然林的面积基本相等,但破碎度较大、斑块形状相对简单、斑块分布较集中,软阔叶林及硬阔叶林斑块分别占11.89%和7.38%.研究表明,该林业局的森林景观受人为干扰程度过大,景观结构不合理,要实现林业的可持续发展,必须对景观斑块结构进行调整.  相似文献   

17.
We studied the relative effects of landscape configuration, environmental variables, forest age, and spatial variables on estimated aboveground biomass (AGB) in Costa Rican secondary rain forests patches. We measured trees ≥5 cm dbh in 24, 0.25 ha plots and estimated AGB for trees 5–24.9 cm dbh and for trees >25 cm dbh using two allometric equations based on multispecies models using tree dbh and wood‐specific gravity. AGB averaged 87.3 Mg/ha for the 24 plots (not including remnant trees) and 123.4 Mg/ha including remnant trees (20 plots). There was no effect of forest age on AGB. Variation partitioning analysis showed that soils, climate, landscape configuration, and space together explained 61% of tree AGB variance. When controlling for the effects of the other three variables, only soils remained significant. Soil properties, specifically K and Cu, had the strongest independent effect on AGB (variation partitioning, R2 = 0.17, p = 0.0310), indicating that in this landscape, AGB variation in secondary forest patches is influenced by soil chemical properties. Elucidating the relative influence of soils in AGB variation is critical for understanding changes associated with land cover modification across Neotropical landscapes, as it could have important consequences for land use planning since secondary forests are considered carbon sinks. Abstract in Spanish is available with online material.  相似文献   

18.
海南岛霸王岭热带天然林景观格局与动态   总被引:1,自引:0,他引:1       下载免费PDF全文
热带森林是陆地上物种最丰富和结构最复杂的森林生态系统, 同时也是受景观破碎化影响而生物多样性丧失最严重的植被类型。在对海南岛霸王岭热带天然林进行公里网格样方调查的基础上, 采用栅格途径及统计方法对三期遥感影像数据进行了景观格局和动态规律分析。结果表明: 霸王岭热带天然林景观由4个处于不同恢复阶段的林分斑块(I、II、III和IV)组成; 在1986~1998年, 除林分斑块IV外, 大多数斑块类型都发生了显著的变化, 而在1998~2002年, 大多数斑块类型变化不显著。在1986~2002年, 大多数斑块类型破碎化趋势明显, 表现为斑块数、边缘密度持续增加, 以及斑块平均大小和核心区面积不断减小; 恢复较早期阶段的次生林(I、II和III)与恢复较后期林分(IV)之间的距离显著相关。随着与IV距离的增加, 恢复时间短的次生林所占比例逐渐增加。  相似文献   

19.
20.
长白山露水河林业局森林景观格局动态   总被引:6,自引:0,他引:6  
基于1987、1995、2003年长白山露水河林业局森林资源二类调查资料,利用ArcGIS和FRAGSTATS等软件,在景观水平和斑块水平上分析了1987-2003年该区景观格局变化及其与森林经营机制之间的关系.结果表明:研究期间,研究区森林景观破碎化程度加剧、景观异质性程度加大;1987-2003年,研究区斑块数增加979块,最大斑块面积比例逐渐下降,由1987年的28.7%降至2003年的12.7%;由于经营方式的转变,该区景观基质由1987年的阔叶混交林转变为1995年后的混合景观基质;景观破碎化程度在1995-2003年的变化趋势较1987-1995年有所减缓;期间,该区阔叶混交林的平均斑块面积下降最多、边界分割程度最高,表明天然次生林受人类干扰最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号