首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
利用铁葡聚糖分离纤毛虫接合对的方法   总被引:1,自引:1,他引:1  
介绍一种制备微小铁葡聚糖颗粒以及利用微小铁葡聚糖颗粒分离纤毛虫接合对的方法,通过本方法可以获得接合率达95%以上,且发育基本同步的实验材料。  相似文献   

2.
啤酒废酵母中β-1,3-葡聚糖的提取工艺   总被引:1,自引:0,他引:1  
研究采用酶-碱法从经超声波处理的废酵母残渣中提取β-1,3-葡聚糖的工艺,通过正交试验得出理想的酶处理工艺条件:酶添加量208U/g,温度50℃、pH6,酶解8h,蛋白质去除率为62.82%,每L废酵母液中可回收0.348g多肽、氨基酸的蛋白水解液;碱处理工艺条件:用30mL质量分数为2% NaOH溶液在70℃处理酶解后的沉淀物5h。所得β-1,3-葡聚糖纯度为90.50%,得率为11.00%,经紫外光谱、薄层层析和性质分析为高纯度的β-1,3-葡聚糖。  相似文献   

3.
英国诺丁汉大学科学家N.W.Blackhall、M.R.Davey及其同事利用流式细胞分类术评估了在荧光素异硫氰酸盐-接合葡聚糖(FITC-葡聚糖)存在下电激水稻原生质体后的瞬时基因表达,并与在携带cat基因的质粒存在下电激水稻原生质体后的瞬时基因表达结果进行了比较。结果发现,FITC-葡聚糖摄取与cat  相似文献   

4.
研究了14种外源物质(化合物)对灵芝细胞生长和发酵合成多糖和β-葡聚糖的影响。结果表明,连翘水提物(3g/L)对灵芝细胞生长具有显著促进作用;薏苡仁酯(3g/L)对灵芝胞内多糖和β-葡聚糖的合成均具有促进作用;而桔梗水提物、硝酸铈铵、硝酸镨、茉莉酸甲酯和硝普钠对灵芝细胞生长和产物合成均具有抑制作用。进一步通过Box-Behnken试验设计和响应面法分析,建立了添加薏苡仁酯发酵产β-葡聚糖的二次多项式模型,经分析得到产β-葡聚糖的最优条件为:薏苡仁酯添加量10.5g/L、接种量16%、添加时间第88小时、发酵初始pH 7.00。在此条件下获得β-葡聚糖的产量可达(40.67±8.43)mg/L,与未添加薏苡仁酯的对照组相比,提高了41.86%;多糖产量为(0.99±0.21)g/L,与对照组相比,提高了31.99%。结果提示所得添加薏苡仁酯的优化条件可定向诱导灵芝β-葡聚糖的合成,同时也表明在灵芝液体发酵体系中添加薏苡仁酯发酵产多糖和β-葡聚糖具有一定的实用价值。  相似文献   

5.
旨在探讨一种新型硅化超顺磁性氧化铁纳米颗粒标记人羊膜间充质细胞的最佳方法, 并检测其对细胞增殖的影响. 用不同浓度的Si-SPIO和多聚赖氨酸混合制备PLL-Si-SPIO复合物, 标记体外培养的hAMCs. 利用普鲁士蓝染色和透射电子显微镜等方法对Si-SPIO的标记情况进行分析鉴定. 分析Si-SPIO标记后1~4周铁颗粒在细胞内的维持与稳定. 应用MTS分析法探讨经Si-SPIO标记后hAMCs的增殖活性. Si-SPIO标记后的hAMCs移植到小鼠纹状体内1周, 鉴定Si-SPIO阳性细胞的存活与分布. 观察发现, hAMCs经Si-SPIO标记后细胞内可检测到大量铁颗粒, 铁颗粒能在细胞内维持4周以上. Si-SPIO标记具有浓度依赖性, 最适浓度为20 µg/mL; 较低浓度的Si-SPIO对细胞增殖活力没有显著影响. 移植到小鼠脑内1周后可见Si-SPIO阳性细胞. 结果可知, 浓度为20 µg/mL的Si-SPIO标记hAMCs可获得良好的标记效果, 并且不影响细胞的增殖活力.  相似文献   

6.
酵母葡聚糖是水产养殖中使用最广泛的免疫增强剂之一,但其不溶解性不利于其免疫增强作用的发挥。为了增加酵母葡聚糖的溶解性,研究共制备了8种酵母葡聚糖衍生物,即4种不同取代度的羧甲基葡聚糖和磺乙基葡聚糖。将葡聚糖和其8种衍生物分别按照5、25和100μg/mL的浓度分别添加到原代培养凡纳滨对虾血细胞的培养液中。以空白血细胞作为对照。孵育6h、12h和24h后分别取样,测定血细胞的酚氧化酶和呼吸暴发活力。结果表明,在6h时,所有葡聚糖衍生物处理组的酚氧化酶活力均显著高于相同浓度下的未衍生葡聚糖处理组(P0.05)。而25μg/mL酵母葡聚糖衍生物处理组的呼吸暴发活力显著高于同浓度未经衍生葡聚糖处理组(P0.05)。在12h时,所有酵母葡聚糖衍生物处理组的酚氧化酶和呼吸暴发活力均显著高于未衍生葡聚糖处理组(P0.05)。在6h和12h时,同浓度各葡聚糖衍生物处理组的血细胞酚氧化酶和呼吸暴发活力并无显著差异(P0.05)。研究结果表明,羧甲基葡聚糖和磺乙基葡聚糖均比未衍生葡聚糖具有更强的免疫促进作用,而且这种免疫促进作用在两种衍生物之间没有显著差异;另一方面,酵母葡聚糖衍生物的免疫促进作用与其使用浓度有关,而与其取代度没有明显的关系。  相似文献   

7.
采用硅烷化试剂Si(OC2H5)3C3H6NH2(APTES)对纳米Fe3O4颗粒表面进行氨基化改性后, 考察了不同浓度偶联剂戊二醛对于颗粒表面固定牛血清白蛋白(BSA)量的影响。此超顺磁性免疫铁颗粒(SPIO)加入兔抗BSA血清中特异性结合BSA抗体后, 用Gly-HCl缓冲液洗脱得到IgG。结果表明当戊二醛浓度大于10%时, 单位颗粒固定蛋白的量达到最大值约140 mg/mg, 10 min, 15 mg的SPIO即可将1 mL抗血清完全分离, 经过两次快速洗脱, 颗粒表面吸附的抗体即可得到纯化; 琼脂扩散实验表明分离后的抗体仍保持较高活性, SDS-PAGE电泳结果表明用此方法纯化后的兔抗BSA IgG纯度大于99%, 比传统的(NH4)2SO4法有了较大提高, 但纯化量并没有减少; SPIO在经过五次重复利用后仍能保持78%以上的分离效果。  相似文献   

8.
采用H2 SO4催化和自催化乙醇法对麦秆进行预处理,比较预处理后麦秆的主要化学组成、纤维素酶解性能和半同步糖化发酵生产乙醇特性,并进行物料衡算。结果表明:H2 SO4催化和自催化乙醇预处理过程中纤维素固体回收率大于90%。添加非离子表面活性剂吐温20和吐温80没有显著提高H2 SO4催化乙醇预处理后纤维素的酶解葡萄糖得率及半同步糖化发酵过程中乙醇的产量,而对自催化乙醇处理后麦秆的酶解和半同步糖化发酵过程有一定程度的促进作用,相应的酶解葡聚糖转化率由72.7%提高到85.0%,而半同步糖化发酵过程中乙醇质量浓度提高了11.4%。物料衡算结果表明:酸催化和自催化乙醇预处理后葡聚糖回收率分别为91.0%和95.4%;半同步糖化发酵生产乙醇的得率分别为10.4和11.6 g(按100 g原料计)。  相似文献   

9.
蚯蚓和铁处理对苹果根铁营养影响   总被引:2,自引:0,他引:2  
试验于2007~2009年在河北省永年县曹庄村和中国农业大学曲周实验站进行。在苹果树根际用不同价态的2500、5000、10000、20000mg/kg的铁处理玉米秸秆后接种蚯蚓,研究蚯蚓和铁对苹果根系生长、蚯蚓对铁的富集转移及根质外体铁的影响。结果表明:蚯蚓对铁有很大的富集量,在20000mg/kg(试验所用最高浓度)二价铁和三价铁处理的秸秆中可以成活并把秸秆转化为蚯蚓粪,促进根系生长,提高根的质外体铁含量,蚯蚓对二价铁的适应性高于三价铁。蚯蚓可将有机物料中的铁转移到果树根系内,5000mg/kg铁处理增加蚯蚓体内Fe2+含量和根质外体铁含量效果最好,蚯蚓、蚯蚓粪和根中的全铁含量随铁处理浓度的增加而增加。铁显著促进果树根系生长,没有用铁处理过的秸秆接种蚯蚓诱导的新根量明显少于用铁处理的,两种不同价态的铁都是以5000mg/kg的新根量最多。蚯蚓显著促进根系生长,没有接种蚯蚓的处理新根量显著少于接种蚯蚓的处理。  相似文献   

10.
采用H2SO4催化和自催化乙醇法对麦秆进行预处理,比较预处理后麦秆的主要化学组成、纤维素酶解性能和半同步糖化发酵生产乙醇特性,并进行物料衡算。结果表明:H2SO4催化和自催化乙醇预处理过程中纤维素固体回收率大于90%。添加非离子表面活性剂吐温20和吐温80没有显著提高H2SO4催化乙醇预处理后纤维素的酶解葡萄糖得率及半同步糖化发酵过程中乙醇的产量,而对自催化乙醇处理后麦秆的酶解和半同步糖化发酵过程有一定程度的促进作用,相应的酶解葡聚糖转化率由72.7%提高到85.0%,而半同步糖化发酵过程中乙醇质量浓度提高了11.4%。物料衡算结果表明:酸催化和自催化乙醇预处理后葡聚糖回收率分别为91.0%和95.4%;半同步糖化发酵生产乙醇的得率分别为10.4和11.6 g(按100 g原料计)。  相似文献   

11.
Effects of static magnetic fields on diffusion in solutions   总被引:2,自引:0,他引:2  
Static magnetic fields affect the diffusion of biological particles in solutions through the Lorentz force and Maxwell stress. These effects were analyzed theoretically to estimate the threshold field strength for these effects. Our results show that the Lorentz force suppresses the diffusion of charged particles such as Na+, K+, Ca2+, Cl-, and plasma proteins. However, the threshold is so high, i.e., more than 10(4) T, that the Lorentz force does not affect the ion diffusion at typical field strengths (a few Tesla at most). Since the threshold of gradient fields for producing a change in ion diffusion through the Maxwell stress is more than 10(5) T2/m for paramagnetic molecules (FeCl3, O2) and plasma proteins, their diffusion would be unaffected by typical gradient fields (100 T2/m at most) and even by high gradient fields (less than 10(5) T2/m) used in magnetic separation techniques. In contrast, movement of deoxygenated erythrocytes and FeCl3 colloids (more than 10(3) molecules) is influenced by the usual gradient fields due to a volume effect.  相似文献   

12.
The kinetic properties of glutamine synthetase (EC 6.3.1.2) isolated from pea chloroplasts and purified according to the previously developed procedure have been investigated. The pH optimum for the enzymatic reaction in the presence of Mg2+ and Mn2+ are 7.5-7.6 and 5.5, respectively. The corresponding values of the activation energy per enzyme monomer (Mr = 60 000) are equal to 2900 and 1190 cal/mole. With Mg2+ the values of Km(app.) for NH4+, NH2OH, L-glutamate (+NH4+), L-glutamate (+NH2OH), ATP(+NH4+ and NH2OH) and Mg-ATP (+NH4+ and NH2OH) are 0.64, 17.5, 5.6, 7.0, 1.3 and 0.74 mM, respectively.  相似文献   

13.
Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two groups of organisms to the metabolism of CO, CH4, and NH4+ in various environments are not known. In the ammonia oxidizers, ammonia monooxygenase, the enzyme responsible for the conversion of NH4+ to NH2OH, also catalyzes the oxidation of CH4 to CH3OH. Ammonia monooxygenase also mediates the transformation of CH3OH to CO2 and cell carbon, but the pathway by which this is done is not known. At least one species of ammonia oxidizer, Nitrosococcus oceanus, exhibits a Km for CH4 oxidation similar to that of methanotrophs. However, the highest rate of CH4 oxidation recorded in an ammonia oxidizer is still five times lower than rates in methanotrophs, and ammonia oxidizers are apparently unable to grow on CH4. Methanotrophs oxidize NH4+ to NH2OH via methane monooxygenase and NH4+ to NH2OH via methane monooxygenase and NH2OH to NO2- via an NH2OH oxidase which may resemble the enzyme found in ammonia oxidizers. Maximum rates of NH4+ oxidation are considerably lower than in ammonia oxidizers, and the affinity for NH4+ is generally lower than in ammonia oxidizers. NH4+ does not apparently support growth in methanotrophs. Both ammonia monooxygenase and methane monooxygenase oxidize CO to CO2, but CO cannot support growth in either ammonia oxidizers or methanotrophs. These organisms have affinities for CO which are comparable to those for their growth substrates and often higher than those in carboxydobacteria. The methane monooxygenases of methanotrophs exist in two forms: a soluble form and a particulate form. The soluble form is well characterized and appears unrelated to the particulate. Ammonia monooxygenase and the particulate methane monooxygenase share a number of similarities. Both enzymes contain copper and are membrane bound. They oxidize a variety of inorganic and organic compounds, and their inhibitor profiles are similar. Inhibitors thought to be specific to ammonia oxidizers have been used in environmental studies of nitrification. However, almost all of the numerous compounds found to inhibit ammonia oxidizers also inhibit methanotrophs, and most of the inhibitors act upon the monooxygenases. Many probably exert their effect by chelating copper, which is essential to the proper functioning of some monooxygenases. The lack of inhibitors specific for one or the other of the two groups of bacteria hampers the determination of their relative roles in nature.  相似文献   

14.
The reaction between hydroxylamine (NH2OH) and human hemoglobin (Hb) at pH 6-8 and the reaction between NH2OH and methemoglobin (Hb+) chiefly at pH 7 were studied under anaerobic conditions at 25 degrees C. In presence of cyanide, which was used to trap Hb+, Hb was oxidized by NH2OH to methemoglobin cyanide with production of about 0.5 mol NH+4/mol of heme oxidized at pH 7. The conversion of Hb to Hb+ was first order in [Hb] (or nearly so) but the pseudo-first-order rate constant was not strictly proportional to [NH2OH]. Thus, the apparent second-order rate constant at pH 7 decreased from about 30 M-1 X s-1 to a limiting value of 11.3 M-1 X s-1 with increasing [NH2OH]. The rate of Hb oxidation was not much affected by cyanide, whereas there was no reaction between NH2OH and carbonmonoxyhemoglobin (HbCO). The pseudo-first-order rate constant for Hb oxidation at 500 microM NH2OH increased from about 0.008 s-1 at pH 6 to 0.02 s-1 at pH 8. The oxidation of Hb by NH2OH terminated prematurely at 75-90% completion at pH 7 and at 30-35% completion at pH 8. Data on the premature termination of reaction fit the titration curve for a group with pK = 7.5-7.7. NH2OH was decomposed by Hb+ to N2, NH+4, and a small amount of N2O in what appears to be a dismutation reaction. Nitrite and hydrazine were not detected, and N2 and NH+4 were produced in nearly equimolar amounts. The dismutation reaction was first order in [Hb+] and [NH2OH] only at low concentrations of reactants and was cleanly inhibited by cyanide. The spectrum of Hb+ remained unchanged during the reaction, except for the gradual formation of some choleglobin-like (green) pigment, whereas in the presence of CO, HbCO was formed. Kinetics are consistent with the view advanced previously by J. S. Colter and J. H. Quastel [1950) Arch. Biochem. 27, 368-389) that the decomposition of NH2OH proceeds by a mechanism involving a Hb/Hb+ cycle (reactions [1] and [2]) in which Hb is oxidized to Hb+ by NH2OH.  相似文献   

15.
Fe emits low-energy X rays and Auger electrons by electron capture decay. Auger electrons are useful for autoradiographic examination of Fe incorporation among microbial communities. Attainable resolution, in terms of silver grain deposition, is excellent and comparable to H. Two known Fe-demanding processes, photosynthetic CO(2) fixation and N(2) fixation, were examined by autoradiography of Anabaena populations. During photosynthetically active (illuminated) N(2)-fixing periods, biological incorporation of FeCl(3) by vegetative cells and heterocysts was evident. When N(2) fixation was suppressed by NH(4) additions, heterocysts revealed no incorporation of Fe. Conversely, when N(2)-fixing Anabaena filaments were placed in darkness, Fe incorporation decreased in vegetative cells, whereas heterocysts showed sustained rates of Fe incorporation. Bacteria actively incorporated Fe under both light and dark conditions. The chelated (by Na(2)-ethylenediaminetetraacetate) form of FeCl(3) was more readily incorporated than the nonchelated form. Furthermore, abiotic adsorption of Fe to filters and nonliving particles proved lower when chelated Fe was used in experiments. Fe autoradiography is useful for observing the fate and cellular distribution of various forms of Fe among aquatic microbial communities.  相似文献   

16.
Whether selected heterotrophic nitrifiers, as do the autotrophs, conserve energy during the oxidation of their nitrogenous substrates was studied. The examination of proton translocation of four different bacterial nitrifiers capable of pyruvic oxime [(PO), CH3-C(NOH)-COOH] nitrification and by an NH4+ oxidizing Arthrobacter sp. was initiated. Three of the PO nitrifying bacteria, all pseudomonads, oxidize hydroxylamine (NH2OH) at a greater rate than PO and yielded only stoichiometric protons when NH2OH was the reductant. The fourth bacterium, Alcaligenes faecalis ATCC 8750, an adept PO oxidizer, does not appreciably oxidize NH2OH. The bacterium displayed----H+NH2OH ratios far less than if NH2OH was stoichiometrically converted to nitrite. When given NH4+, the Arthrobacter sp. yielded proton translocation patterns which were inconsistent with the metabolic data collected concerning NH4+ oxidation. Thus no data was collected which supported energy conservation via proton translocation by these heterotrophic nitrifiers.  相似文献   

17.
R Mei  C F Yocum 《Biochemistry》1991,30(31):7836-7842
Calcium is required for oxidation of water to molecular oxygen by photosystem II; the Ca2+ demand of the reaction increases upon removal of 23- and 17-kDa extrinsic polypeptides from detergent-derived preparations of the photosystem. Employing the manganese reductant NH2OH as a probe to examine the function of Ca2+ in photosystem II reveals that (1) Ca2+ slows the rate of NH2OH inhibition of O2 evolution activity, but only in photosystem II membranes depleted of extrinsic proteins, (2) other divalent cations (Sr2+, Cd2+) that compete for the Ca2+ site also slow NH2OH inhibition, (3) Ca2+ is noncompetitive with respect to NH2OH, (4) in order to slow inhibition, Ca2+ must be present prior to the initiation of NH2OH reduction of manganese, and (5) Ca2+ appears not to interfere with NH2OH reduction of manganese. We conclude that the ability of Ca2+ to slow the rate of NH2OH inhibition arises from the site in photosystem II where Ca2+ normally stimulates O2 evolution and that the mechanism of this phenomenon arises from the ability of Ca2+ or certain surrogate metals to stabilize the ligation environment of the manganese complex.  相似文献   

18.
1. A soluble protein with a molecular weight of 11-12-10(3) has been isolated from bovine-heart mitochondria, which stimulates the following ATP-dependent reactions of submitochondrial particles treated with 0.6 mM EDTA and 1 M NH4OH: reverse electron transfer from succinate to NAD, transhydrogenation from NADH to NADP, and ATP-Pi exchange. The factor has no effect on the NADH oxidase, succinate oxidase and ATPase activities of the particles. 2. The stimulatory effect of the factor in the ATP-dependent reduction of NAD by succinate is 12 mumol-min-1-mg-1 of the factor protein. However, the NH4OH-EDTA treated particles are saturated for maximal activation of the above reaction by very small amounts of the factor (about 20-40 mug factor per mg particle). 3. Electrophoresis of the factor preparation on polyacrylamide gels showed a single protein band plus a nonprotein material which moved at the dye front and was weakly stained with Coomassie Blue. The protein was shown to be required for activation of the particles; whether the fast-moving, nonprotein material is also required is not known. 4. The factor is inhibited by mercurials and N-ethylmaleimide. The former, but not the latter, inhibition is completely reversed by 1,4-dithiothreitol. 5. The NH4OH-EDTA treated particles are also stimulated by rutamycin up to about 0.1 nmol of rutamycin per mg particle; higher rutamycin concentrations inhibit. Depending on the particle preparation, the factor stimulates up to about 3 nmol per mg particle, but does not inhibit at higher concentrations. In addition, under certain conditions in which appropriate concentrations of rutamycin fail to stimulate the particles, the factor still does.  相似文献   

19.
The chemical composition of throughfall depends on the age of the Norway spruce (Picea abies Karst) stands and season of the year. The pH of throughfall decreased and the amount of hydrogen ion in throughfall deposited to the soil increased with increasing age of spruce stands, especially in the winter season. Concentrations of K+, H+, SO4(2-), Mn2+, and NH4(+) in throughfall were higher than bulk precipitation for the whole year and K+, H+, and Mn2+ concentrations were higher in throughfall in winter and the growing season. This indicates that these ions were washed out or washed from the surface of needles and/or the bark, and that NO3(-), NH4(+), Ca2+, Mg2+, Fe2+, and Zn2+ were absorbed in the canopy. The effect of high nitrogen deposition, above critical loads, and an increase in the amount of sulfur and in the sum of the strong acids (S-SO4(2-) and N-NO3(-)) that reached the soil with throughfall may have implications for the vitality of spruce stands, especially in older age classes. The application of Principal Component Analysis (PCA) has led to identification of five factors responsible for the data structure ("mineral dust", "acidic emissions", "heavy metals-dust particles", "ammonium [NH4(+)]", and "H+"). They explain more than 60% of the total variance system. The strong positive correlation between stand age class and ionic concentrations in throughfall occurs for all year and the winter period for ions within the following categories: "acidic emissions", SO4(2-) + NO3(-); "heavy metals-dust particles", Fe2+ + Mn2+ + Zn2+; "mineral dust", Na+ + K+ + Ca2+ + Mg2+; "NH4(+)"; and "H+". The strength of the relationship decreases in the growing period, probably due to processes occurring in the canopy (adsorption, leaching, etc.).  相似文献   

20.
Antifungal effect of a heterotrophic nitrifier Alcaligenes faecalis   总被引:3,自引:0,他引:3  
Alcaligenes faecalis suppressed the growth of 11 strains of fungal plant pathogens in vitro. When it was cultivated on a synthetic medium containing (NH4)2 SO4 as the sole nitrogen source, NH2OH, NO2- and NO3- were produced, indicating that heterotrophic nitrification was occurring. The suppressive effect of A. faecalis on plant pathogens was due to its NH2OH produced. © Rapid Science Ltd. 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号