首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A global analysis of root distributions for terrestrial biomes   总被引:58,自引:0,他引:58  
Understanding and predicting ecosystem functioning (e.g., carbon and water fluxes) and the role of soils in carbon storage requires an accurate assessment of plant rooting distributions. Here, in a comprehensive literature synthesis, we analyze rooting patterns for terrestrial biomes and compare distributions for various plant functional groups. We compiled a database of 250 root studies, subdividing suitable results into 11 biomes, and fitted the depth coefficient to the data for each biome (Gale and Grigal 1987). is a simple numerical index of rooting distribution based on the asymptotic equation Y=1-d, where d = depth and Y = the proportion of roots from the surface to depth d. High values of correspond to a greater proportion of roots with depth. Tundra, boreal forest, and temperate grasslands showed the shallowest rooting profiles (=0.913, 0.943, and 0.943, respectively), with 80–90% of roots in the top 30 cm of soil; deserts and temperate coniferous forests showed the deepest profiles (=0.975 and 0.976, respectively) and had only 50% of their roots in the upper 30 cm. Standing root biomass varied by over an order of magnitude across biomes, from approximately 0.2 to 5 kg m-2. Tropical evergreen forests had the highest root biomass (5 kg m-2), but other forest biomes and sclerophyllous shrublands were of similar magnitude. Root biomass for croplands, deserts, tundra and grasslands was below 1.5 kg m-2. Root/shoot (R/S) ratios were highest for tundra, grasslands, and cold deserts (ranging from 4 to 7); forest ecosystems and croplands had the lowest R/S ratios (approximately 0.1 to 0.5). Comparing data across biomes for plant functional groups, grasses had 44% of their roots in the top 10 cm of soil. (=0.952), while shrubs had only 21% in the same depth increment (=0.978). The rooting distribution of all temperate and tropical trees was =0.970 with 26% of roots in the top 10 cm and 60% in the top 30 cm. Overall, the globally averaged root distribution for all ecosystems was =0.966 (r 2=0.89) with approximately 30%, 50%, and 75% of roots in the top 10 cm, 20 cm, and 40 cm, respectively. We discuss the merits and possible shortcomings of our analysis in the context of root biomass and root functioning.  相似文献   

2.

Questions

The rapid climate warming in tundra ecosystems can increase nutrient availability in the soil, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co‐determine whether Arctic warming is mitigated or accelerated, making the understanding of successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, depending on the depth where they take up most nutrients. However, nutrient uptake at different soil depths by tundra plant species that differ in rooting depth is unclear.

Location

Kytalyk Nature Reserve, northeast Siberia, Russia.

Methods

We injected 15N to 5 cm, 15 cm and the thaw front of the soil in a moist tussock tundra. The absorption of 15N by grasses, sedges, deciduous shrubs and evergreen shrubs from the three depths was compared.

Results

The results clearly show a vertical differentiation of N uptake by these plant functional types, corresponding to their rooting strategy. Shallow‐rooting dwarf shrubs were more capable of absorbing nutrients from the upper soil than from deeper soil. Deep‐rooting grasses and sedges were more capable of absorbing nutrients from deeper soil than the dwarf shrubs. The natural 15N abundances in control plants also indicate that graminoids can absorb more nutrients from the deeper soil than dwarf shrubs.

Conclusions

Our results show that graminoids and shrubs in the Arctic differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, while shrubs mainly forage in upper soil layers. Our results suggest that tundra vegetation will become graminoid‐dominated as permafrost thaw progresses and nutrient availability increases in the deep soil.  相似文献   

3.
Articulating the consequences of global climate change on terrestrial ecosystem biogeochemistry is a critical component of Arctic system studies. Leaf mineral nutrition responses of tundra plants is an important measure of changes in organismic and ecosystem attributes because leaf nitrogen and carbon contents effect photosynthesis, primary production, carbon budgets, leaf litter, and soil organic matter decomposition as well as herbivore forage quality. In this study, we used a longterm experiment where snow depth and summer temperatures were increased independently and together to articulate how a series of climate change scenarios would affect leaf N, leaf C, and leaf C:N for vegetation in dry and moist tussock tundra in northern Alaska, USA. Our findings were: 1) moist tundra vegetation is much more responsive to this suite of climate change scenarios than dry tundra with up to a 25% increase in leaf N; 2) life forms exhibit divergence in leaf C, N, and C:N with deciduous shrubs and graminoids having almost identical leaf N contents; 3) for some species, leaf mineral nutrition responses to these climate change scenarios are tundra type dependent ( Betula ), but for others ( Vaccinium vitis-idaea ), strong responses are exhibited regardless of tundra type; and 4) the seasonal patterns and magnitudes of leaf C and leaf N in deciduous and evergreen shrubs were responsive to conditions of deeper snow in winter. Leaf N is was generally higher immediately after emergence from the deep snow experimental treatments and leaf N was higher during the subsequent summer and fall, and the leaf C:N were lower, especially in deciduous shrubs. These findings indicate that coupled increases in snow depth and warmer summer temperatures will alter the magnitudes and patterns of leaf mineral nutrition and that the long term consequences of these changes may feed-forward and affect ecosystem processes.  相似文献   

4.
1 We model the potential vegetation and annual net primary production (NPP) of China on a 10′ grid under the present climate using the processed‐based equilibrium terrestrial biosphere model BIOME3. The simulated distribution of the vegetation was in general in good agreement with the potential natural vegetation based on a numerical comparison between the two maps using the ΔV statistic (ΔV = 0.23). Predicted and measured NPP were also similar, especially in terms of biome‐averages. 2 A coupled ocean–atmosphere general circulation model including sulphate aerosols was used to drive a double greenhouse gas scenario for 2070–2099. Simulated vegetation maps from two different CO2 scenarios (340 and 500 p.p.m.v.) were compared to the baseline biome map using ΔV. Climate change alone produced a large reduction in desert, alpine tundra and ice/polar desert, and a general pole‐ward shift of the boreal, temperate deciduous, warm–temperate evergreen and tropical forest belts, a decline in boreal deciduous forest and the appearance of tropical deciduous forest. The inclusion of CO2 physiological effects led to a marked decrease in moist savannas and desert, a general decrease for grasslands and steppe, and disappearance of xeric woodland/scrub. Temperate deciduous broadleaved forest, however, shifted north to occupy nearly half the area of previously temperate mixed forest. 3 The impact of climate change and increasing CO2 is not only on biogeography, but also on potential NPP. The NPP values for most of the biomes in the scenarios with CO2 set at 340 p.p.m.v. and 500 p.p.m.v. are greater than those under the current climate, except for the temperate deciduous forest, temperate evergreen broadleaved forest, tropical rain forest, tropical seasonal forest, and xeric woodland/scrub biomes. Total vegetation and total carbon is simulated to increase significantly in the future climate scenario, both with and without the CO2 direct physiological effect. 4 Our results show that the global process‐based equilibrium terrestrial biosphere model BIOME3 can be used successfully at a regional scale.  相似文献   

5.
The adaptive significance of nuclear DNA variation in angiosperms is still widely debated. The discussion mainly revolves round the causative factors influencing genome size and the adaptive consequences to an organism according to its growth form and environmental conditions. Nuclear DNA values are now known for 3874 angiosperm species (including 773 woody species) from over 219 families (out of a total of 500) and 181 species of woody gymnosperms, representing all the families. Therefore, comparisons have been made on not only angiosperms, taken as a whole, but also on the subsets of data based on taxonomic groups, growth forms, and environment. Nuclear DNA amounts in woody angiosperms are restricted to less than 23.54 % of the total range of herbaceous angiosperms; this range is further reduced to 6.8 % when woody and herbaceous species of temperate angiosperms are compared. Similarly, the tropical woody dicots are restricted to less than 50.5 % of the total range of tropical herbaceous dicots, while temperate woody dicots are restricted to less than 10.96 % of the total range of temperate herbaceous dicots. In the family Fabaceae woody species account for less than 14.1 % of herbaceous species. Therefore, in the total angiosperm sample and in subsets of data, woody growth form is characterized by a smaller genome size compared with the herbaceous growth form. Comparisons between angiosperm species growing in tropical and temperate regions show highly significant differences in DNA amount and genome size in the total angiosperm sample. However, when only herbaceous angiosperms were considered, significant differences were obtained in DNA amount, while genome size showed a non-significant difference. An atypical result was obtained in the case of woody angiosperms where mean DNA amount of tropical species was almost 25.04 % higher than that of temperate species, which is because of the inclusion of 85 species of woody monocots in the tropical sample. The difference becomes insignificant when genome size is compared. Comparison of tropical and temperate species among dicots and monocots and herbaceous monocots taken separately showed significant differences both in DNA amount and genome size. In herbaceous dicots, while DNA amount showed significant differences the genome size varies insignificantly. There was a non-significant difference among tropical and temperate woody dicots. In three families, i.e., Poaceae, Asteraceae, and Fabaceae the temperate species have significantly higher DNA amount and genome size than the tropical ones. Woody gymnosperms had significantly more DNA amount and genome size than woody angiosperms, woody eudicots, and woody monocots. Woody monocots also had significantly more DNA amount and genome size than woody eudicots. Lastly, there was no significant difference between deciduous and evergreen hardwoods. The significance of these results in relation to present knowledge on the evolution of genome size is discussed.  相似文献   

6.
Kemppinen  Julia  Niittynen  Pekka  Virkkala  Anna-Maria  Happonen  Konsta  Riihimäki  Henri  Aalto  Juha  Luoto  Miska 《Ecosystems》2021,24(6):1378-1392

In the tundra, woody plants are dispersing towards higher latitudes and altitudes due to increasingly favourable climatic conditions. The coverage and height of woody plants are increasing, which may influence the soils of the tundra ecosystem. Here, we use structural equation modelling to analyse 171 study plots and to examine if the coverage and height of woody plants affect the growing-season topsoil moisture and temperature (<?10 cm) as well as soil organic carbon stocks (<?80 cm). In our study setting, we consider the hierarchy of the ecosystem by controlling for other factors, such as topography, wintertime snow depth and the overall plant coverage that potentially influence woody plants and soil properties in this dwarf shrub-dominated landscape in northern Fennoscandia. We found strong links from topography to both vegetation and soil. Further, we found that woody plants influence multiple soil properties: the dominance of woody plants inversely correlated with soil moisture, soil temperature, and soil organic carbon stocks (standardised regression coefficients?=???0.39; ??0.22; ??0.34, respectively), even when controlling for other landscape features. Our results indicate that the dominance of dwarf shrubs may lead to soils that are drier, colder, and contain less organic carbon. Thus, there are multiple mechanisms through which woody plants may influence tundra soils.

  相似文献   

7.
Aim  To study how differences in species richness patterns of woody and herbaceous plants may be influenced by ecological and evolutionary factors. Unimodal species richness–productivity relationships (SRPRs) have been of interest to ecologists since they were first described three decades ago for British herbaceous vegetation by J. P. Grime. The decrease in richness at high productivity may be due to competitive exclusion of subordinate species, or diverse factors related to evolution and dispersal. Unimodal SRPRs are most often reported for plants, but there are exceptions. For example, unimodal SRPRs are common in the temperate zone but not in the tropics. Similarly, woody species and forest communities in the Northern Hemisphere do not tend to show unimodal SRPRs.
Location  Global.
Methods  We used data from the literature to test whether a unimodal SRPR applies to woody species and forest communities on a global scale. We explored whether the shape of SRPRs may be related to the lack of clonality in woody species (which may prevent their being competitively superior), or the legacy of evolutionary history (most temperate woody species originate from tropical lineages, and due to niche conservatism they may still demonstrate 'tropical patterns'). We used case studies that reported the names of the dominant or most abundant species for productive sites.
Results  Woody species were indeed less clonal than herbaceous species. Both clonality and the temperate evolutionary background of dominating species were associated with unimodality in SRPRs, with woodiness modifying the clonality effect.
Main conclusions  The unimodal SRPR has been common in the ecological literature because most such studies originate from temperate herbaceous communities with many clonal species. Consequently, both evolutionary and ecological factors may influence species richness patterns.  相似文献   

8.
武夷山落叶林木本植物细根性状研究   总被引:3,自引:1,他引:2  
王钊颖  程林  王满堂  孙俊  钟全林  李曼  程栋梁 《生态学报》2018,38(22):8088-8097
细根作为植物吸收水分与养分的重要器官,其性状特征在指示植物的生长和分布等方面的意义重大。以江西武夷山国家级自然保护区落叶林群落木本植物的细根为对象,对根氮含量(RNC)、根磷含量(RPC)、根氮磷比(RN∶P)、根组织密度(RTD)、比根长(SRL)和比根面积(SRA)等6个细根性状进行了研究,并对群落内不同物种以及不同结构单元(灌木和乔木)间细根性状的差异性进行分析。结果表明:武夷山落叶林群落木本植物的平均RNC为(10.27±3.11) mg/g、平均RPC为(0.63±0.17) mg/g、平均RN∶P为16. 36±2. 61、平均RTD为(0. 10±0. 02) g/cm~3、平均SRL为(1582.65±186.67) cm/g、平均SRA为(464.81±64.10) cm~2/g;灌木的SRL显著高于乔木(P=0.033),其余细根性状在灌木和乔木之间无显著差异(P 0.05);在细根性状中,RNC与RPC呈极显著正相关,但与RTD呈显著负相关,RPC、SRA分别与RTD呈极显著负相关,RPC、SRL分别与SRA呈极显著正相关。这可能反映了灌木倾向于通过增加SRL来提高水分和养分的获取能力以增强与乔木的竞争优势;群落中的植物通过改变SRA及RTD进行生长与防御之间的权衡。  相似文献   

9.
Jian Ni 《Folia Geobotanica》2001,36(2):113-129
A biome classification for China was established based on plant functional types (PFTs) using the BIOME3 model to include 16 biomes. In the eastern part of China, the PFTs of trees determine mostly the physiognomy of landscape. Biomes range from boreal deciduous coniferous forest/woodland, boreal mixed forest/woodland, temperate mixed forest, temperate broad-leaved deciduous forest, warm-temperate broad-leaved evergreen/mixed forest, warm-temperate/cool-temperate evergreen coniferous forest, xeric woodland/scrub, to tropical seasonal and rain forest, and tropical deciduous forest from north to south. In the northern and western part of China, grass is the dominant PFT. From northeast to west and southwest the biomes range from moist savannas, tall grassland, short grassland, dry savannas, arid shrubland/steppe, desert, to alpine tundra/ice/polar desert. Comparisons between the classification introduced here and the four classifications which were established over the past two decades, i.e. the vegetation classification, the vegetation division, the physical ecoregion, and the initial biome classification have showed that the different aims of biome classifications have resulted in different biome schemes each with its own unique characteristics and disadvantages for global change study. The new biome classification relies not only on climatic variables, but also on soil factor, vegetation functional variables, ecophysiological parameters and competition among the PFTs. It is a comprehensive classification that using multivariables better expresses the vegetation distribution and can be compared with world biome classifications. It can be easily used in the response study of Chinese biomes to global change, regionally and globally.  相似文献   

10.
根据2016年-2017年对兴山县全域进行网格调查所获取的3450份野生种子植物标本, 结合相关标本馆馆藏标本数据, 对兴山县域种子植物区系特征与垂直分布格局进行了研究。结果显示, 兴山县共有野生种子植物145科705属1883种。在科级水平上主要以热带分布型为主, 共有63科, 占总科数的43.45%; 属级水平上温带分布型占据优势地位, 共有379属, 占总属数的53.76%。兴山县种子植物区系特征兼具有温带性质和热带亲缘, 过渡性特征明显, 区系成分复杂。种子植物在垂直分布上主要呈现为三大类: 在海拔100-1000 m范围内主要形成低山常绿落叶阔叶混交林; 在海拔1000-1900 m范围内以中山落叶阔叶林为主; 海拔1900-2500 m范围内形成亚高山灌丛。总体来看, 兴山县种子植物在海拔700-1300 m的中海拔地区物种最为丰富。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号