首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
With the goal of developing a defined medium for the production of desiccation-tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus, we evaluated the impact of various media components such as amino acids, carbohydrates, trace metals and vitamins on hyphal growth and sporulation of P. fumosoroseus cultures and on the freeze-drying tolerance of blastospores produced under these conditions. A comparison of 13 amino acids as sole nitrogen sources showed that glutamate, aspartate, glycine and arginine supported biomass accumulations (12–16 mg ml−1) and blastospore yields (6–11 × 108 blastospores ml−1) comparable to our standard production medium which contains casamino acids as the nitrogen source. Using glutamate as the sole nitrogen source, tests with various carbohydrates showed that P. fumosoroseus grew best on glucose (18.8 mg biomass ml−1) but produced similar blastospore concentrations (7.3–11.0 × 108) when grown with glucose, glycerol, fructose or sucrose. P. fumosoroseus cultures grown in media with sodium citrate or galactose as the sole carbohydrate produced lower blastospore concentrations but more-desiccation-tolerant spores. Zinc was the only trace metal tested that was required for optimal growth and sporulation. In a defined medium with glutamate as the nitrogen source, vitamins were unnecessary for P. fumosoroseus growth or sporulation. When blastospores were freeze-dried in the absence of a suspension medium, residual glucose (>2.5% w/v) was required for enhanced spore survival. Thus, a defined medium containing basal salts, glucose, glutamate and zinc can be used to produce optimal concentrations of desiccation-tolerant blastospores of P. fumosoroseus. Received 27 October 1998/ Accepted in revised form 06 May 1999  相似文献   

2.
Bacilysin biosynthesis and alkaline serine protease production inBacillus subtilis 168 were monitored and compared in batch cultures when various effectors of sporulation were added at different stages of growth in a medium containing sucrose and glutamate. Depending on the time of addition, glucose affected sporulation and serine protease formation to the same extent, but had no effect on bacilysin production. Ammonium andl-alanine additions suppressed all three processes. Casamino acids severely interfered with bacilysin formation and sporulation, but not with protease formation. Decoyinine, a well-known inducer of sporulation, induced protease formation as well, but did not affect bacilysin biosynthesis. The extent of the observed effects depended largely on the time of metabolite additions. The results are discussed with reference to a possible coregulation of sporulation and the formation of bacilysin and alkaline serine protease inB. subtilis.  相似文献   

3.
Xanthan production is influenced by the type and initial concentration of the carbon and nitrogen source as well as by the phosphate and citrate concentrations added. An optimal and industrially useful fermentation medium has been devised. It consists of either glucose (4.0%), sucrose (4.0%) or sirodex A (2.8%) as a sole carbon source, corn steep liquor (2.0%) as a combined nitrogen-phosphate source and additional phosphate (0.1%) and citrate (0.1%) depending on the application of the xanthan formed.  相似文献   

4.
Chloramphenicol production was studied in cultures of Streptomyces venezuelae growing in a simple buffered medium with ammonia as the nitrogen source and glucose, lactose, or a glucose-lactose mixture as the sole source of carbon. With each carbon source the antibiotic was formed during growth. In the glucose-lactose medium, the production pattern was biphasic; a marked decrease in the rate of synthesis was associated with depletion of glucose from the medium and a corresponding diauxie pause in growth. Cells of S. venezuelae contained an inducible beta-galactosidase. Induction by lactose was suppressed by glucose. Measurement of the concentration of intracellular adenosine 3',5'-cyclic monophosphate during growth of cultures with glucose or a glucose-lactose mixture as the source of carbon showed no appreciable changes coinciding with depletion of glucose or the onset of chloramphenicol biosynthesis. It is concluded that the cyclic nucleotide does not mediate selective nutrient utilization or control antibiotic biosynthesis in this organism.  相似文献   

5.
When used as sole nitrogen source, certain amino acids (e.g., proline, asparagine) supported both growth and sporulation by Streptomyces clavuligerus streaked onto solid defined medium. Ammonium supported growth but suppressed sporulation. Amino nitrogen was best for cephalosporin production in liquid defined medium, although urea was almost as useful. A comparison of amino acids showed asparagine and glutamine to be the best nitrogen sources and arginine to be almost as good. Ammonium salts supported a somewhat lower growth rate than asparagine, but antibiotic production was very poor on these inorganic nitrogen sources. Addition of ammonium to asparagine did not affect growth rate but increased mycelial mass; cephalosporin production was reduced by about 75%. Antibiotic production was more closely associated with growth in the absence of ammonium than in its presence, indicating a strong inhibitory and (or) repressive effect of NH4+ on antibiotic production. Ammonium exerted its negative effect when added at 24h or earlier, i.e. before antibiotic formation began.  相似文献   

6.
Pestalotia rhododendri was exposed to vapours from 1 ml propanol solution in water and linear growth, formation of aerial hyphae and production of conidia were determined. A special Petri dish technique was used and maximum stimulation of conidial formation was induced by the vapours from a propanol concentration of 3–4 % (v/v) at 25°C. When propanol was added directly to the medium, a concentration of 1.2 × 10?2M was optimal for growth and sporulation at 30°C. Sporulation stimulated by propanol was observed at temperatures from 20–32°C, with an optimum at 30°C. Certain observations indicated that an exposure to propanol for 24 hours was enough to induce a stimulated spore production. The stimulation was noticed on different media at 25°C, and was more pronounced at 30°C. One exception was observed. Propanol did not promote sporulation when the fungus was grown on maltagar at 30°C. Propanol 3 ° (v/v) in combination with the standard medium containing (NH4)2-tartrate as sole nitrogen source, inhibited the linear growth at 15–20°C, was inactive at 22.5° and 25°C, and stimulated growth at 27.5–31°C. The stimulatory effect was maximal at 30°C. Other media were tested at 25° and 30°C. At both temperatures stimulations of linear growth caused by propanol were observed with a medium containing KNO3 as sole nitrogen source, and inhibitions with maltagar and another medium containing l -asparaginc as sole nitrogen source. The linear growth could be either inhibited or stimulated while the sporulation was stimulated.  相似文献   

7.
Tobacco cells (Nicotiana tabacum) are capable of growth on ammonia as a sole nitrogen source only when succinate, malate, fumarate, citrate, α-ketoglutarate, glutamate, or pyruvate is added to the growth medium. A ratio between the molar concentrations of ammonia to succinate (as a complementary organic acid) in the growth medium of 1.5 was optimal. Succinate had no effect on the rate of uptake of ammonia from the medium into the cells although it did affect the intracellular concentration of ammonia. However, the changes were not sufficient to explain inhibition of growth as being due to ammonia toxicity. The radioactivity from 14C-succinate was incorporated into malate, glutamate, and aspartate within 2 minutes.  相似文献   

8.
The effects of concentration of amino acids, nitrate, and ammonium on the growth and taxol production in cultures of cell line TY-21 of Taxus yunnanensis were investigated. Addition of 20 different amino acids each at 15–20 mg l–1 to B5 medium significantly improved callus growth but inhibited taxol formation in the cultures. The optimum nitrate concentration was 20–30 mM for both growth and taxol production. Ammonium greatly suppressed growth but strongly promoted taxol formation in the cells when it was the sole inorganic nitrogen in the medium. Culturing the suspension cells in nitrate-containing medium for 15 days and then in a medium in which ammonium was the sole inorganic nitrogen for 7 days increased taxol yield by 104%, reaching up to 28.1 mg l–1.  相似文献   

9.
The utilization of some amino acids, added at 1 mM and 10 mM concentrations, as the sole combined nitrogen sources by Frankia sp. strain CpI1, has been investigated. Glutamine, like NH 4 + , provided rapid growth without N2 fixation. Histidine at 1 mM yielded poor N2-fixing activity but better cell growth than N2. Aspartate, glutamate, alanine, proline, each at 1 mM concentration, supported similar levels of N2 fixation and growth. Growth on 10 mM glutamate, proline, or histidine resulted in poor N2-fixing activity and poor cell growth. Cells grown on 10 mM alanine had about half the N2-fixing activity of cells grown on N2 but growth was good. Aspartate at 10 mM concentration, however, stimulated N2-fixing activity dramatically and promoted faster growth. Enzyme analysis suggested that asparate is catabolized by glutamate-oxaloacetate transaminase (GOT), since GOT specific activity was induced, and aspartase activity was not detected, in cells grown on aspartate as the sole combined nitrogen source. Thinlayer chromatography (TLC) of metabolites extracted from N2-grown cells fed with [14C]-aspartate showed that label was rapidly accumulated mainly on aspartate and/or glutamate, depending on the cells' physiological state, without detectable labeling on fumarate or oxaloacetate (OAA). These findings provide evidence that aspartate is catabolized by GOT to OAA which, in turn, is rapidly converted to -ketoglutarate through the TCA cycle and then to glutamate by GOT or by glutamate synthase (GOGAT). The stimulation of N2 fixation and growth by aspartate is probably caused by an increased intracellular glutamate pool.  相似文献   

10.
Uracil, acting as a precursor of UDP-glucose, served as an activator on the production of curdlan with Agrobacterium sp. (ATCC 31750). The time of adding uracil was important to improve curdlan production. When uracil was added after ammonium depletion (at 26 h), it was used as a nitrogen source for cell growth. Although the cell concentration increased, the curdlan production was decreased. If uracil was added at 46 h, then uracil was degraded slowly but still activated curdlan production. With the addition of both sucrose (200 g) and uracil (1.5 g), the curdlan production was increased up to 93 g l–1 after 160 h fermentation.  相似文献   

11.
Abatract The effect of carbon and nitrogen sources on two well-established hairy root clones, LBA1S and C58A, of Hyoscyamus muticus strain Cairo, were investigated. Both clones exhibited completely different patterns with regards to their growth rate, hyoscyamine accumulation, and fatty acid contents. Clone C58A grew faster and yielded more biomass (17.4 g l-1, in 21 days), but produced less hyoscyamine. The maximum hyoscyamine content (120 mg l-1) in clone LBA1S was reached in 28 days. Neither of the clones could use lactose or fructose as the sole carbon source, nor ammonium as the sole nitrogen source. The growth in the medium containing glucose was significantly reduced compared to that containing sucrose. Clone LBA1S was sensitive to the changes in sucrose concentration and an increase in ammonium in the culture medium, whereas C58A tolerated these changes better but was more sensitive to the increase in total nitrogen. Lipid synthesis was active in the exponential growth phase, and the total fatty acid content varied from 5 to 34 mg g-1 of dry root material. The major fatty acids were linoleic, palmitic and linolenic. There were considerable differences in the total amount of lipids and in their relative ratios when different nutrients were applied.Abbreviations DW dry weight - FA fatty acids - FFA free fatty acids - FW fresh weight  相似文献   

12.
A mutation, amdT19, which leads to inability to grow on glutamate as the sole nitrogen source but does not affect growth on glutamate as the sole source of carbon and nitrogen, is shown to result in increased repression of glutamate uptake by glucose. An allelic mutation, amdT102, results in insensitivity to glucose repression. Glutamate uptake is still sensitive to NH4+ repression in the presence of glucose in these strains. Starvation for a carbon source leads to relief of NH4+ repression.  相似文献   

13.
Summary To optimize the fermentation medium for the production of new cephem compounds, cephabacins, by an eubacteriaLysobacter lactamgenus IFO 14,288, the effects of medium components on cephabacin production were investigated. Supplementation of glucose as a sole carbon source in liquid media was the best for the antibiotic production as well as for the cell growth. Casamino acid was the best nitrogen source for antibiotic biosynthesis and cell growth among nitrogen sources tested, and this strain could utilize sulfate or thiosulfate as a sulfur source. No significant effects of growth factors (vitamins) on the antibiotic production and cell growth were observed, but ferrous, magnesium and nickel ions slightly enhanced the cephabacin production.  相似文献   

14.
Utilization of arginine by Klebsiella aerogenes.   总被引:9,自引:9,他引:0       下载免费PDF全文
Klebsiella aerogenes utilized arginine as the sole source of carbon or nitrogen for growth. Arginine was degraded to 2-ketoglutarate and not to succinate, since a citrate synthaseless mutant grows on arginine as the only nitrogen source. When glucose was the energy source, all four nitrogen atoms of arginine were utilized. Three of them apparently did not pass through ammonia but were transferred by transamination, since a mutant unable to produce glutamate by glutamate synthase or glutamate dehydrogenase utilized three of four nitrogen atoms of arginine. Urea was not involved as intermediate, since a unreaseless mutant did not accumulate urea and grew on arginine as efficiently as the wild-type strain. Ornithine appeared to be an intermediate, because cells grown either on glucose and arginine or arginine alone could convert arginine in the presence of hydroxylamine to ornithine. This indicates that an amidinotransferase is the initiating enzyme of arginine breakdown. In addition, the cells contained a transaminase specific for ornithine. In contrast to the hydroxylamine-dependent reaction, this activity could be demonstrated in extracts. The arginine-utilizing system (aut) is apparently controlled like the enzymes responsible for the degradation of histidine (hut) through induction, catabolite repression, and activation by glutamine synthetase.  相似文献   

15.
Growth and production of zeaxanthin by Flavobacterium sp were studied using different carbon and nitrogen sources in a chemically defined medium. The best growth was supported by sucrose, but glucose yielded similar carotenoid concentrations. Both asparagine and glutamine stimulated growth and pigment formation. Carotenoid production and glucose consumption increased as a function of asparagine concentration. In the presence of asparagine, high glucose concentrations decreased pigment production without affecting biomass formation. In the absence of glucose, asparagine could not support growth and zeaxanthin production. When compared to the effect of 55 mM glucose, 10 mM oxaloacetate increased growth and carotenoid production. Pyruvate and other intermediates of the citric acid cycle showed a similar stimulatory effect. The intermediates of glycolysis: glucose 6-phosphate and fructose 1,6-diphosphate did not support growth. These results suggest that Flavobacterium sp utilizes asparagine primarily as a nitrogen source for growth and production of zeaxanthin. Received 29 September 1998/ Accepted in revised form 23 April 1999  相似文献   

16.
A defined medium was developed in which Alcaligenes faecalis var. myxogenes 10C3 mutant K produced a large quantity of β-glucan 10C3K. The medium contained 4% glucose together with 0.1% citrate, succinate or fumarate as the carbon source, 0.15% (NH4)2HPO4 as the nitrogen source and mineral salts. When NaNH4HPO4, KNO3 or urea was used at a concentration of 0.03% nitrogen as the sole nitrogen source, salts of organic acid were not needed in addition to glucose.

In culture medium containing phosphate buffer (M/15, pH 6.5~8.0) large amounts of polysaccharide were formed and its yield from the 4% glucose added was about 50%. Thus, it was shown that polysaccharide production is enhanced greatly if a suitable pH for polysaccharide production is maintained during incubation.  相似文献   

17.
Growth and esterase production (activity on p-nitrophenyl caprylate) by the newly isolated Bacillus circulans MAS2 bacterial strain were studied. The growth rate at 50°C was high (0.9 h-1) on LB medium with glucose added. Esterase production followed growth with the majority of activity being intracellular during exponential growth phase. During stationary phase, the esterase activity was released in the culture medium. The strain was able to grow at 35– 55°C with maximum growth rate at 50°C, showing a pattern typical of a moderate thermophile. Growth occurred at pH 6–9 with a maximum at 8, with a similar pattern for the esterase production. Addition of glucose, fructose, sucrose or sodium acetate greatly promoted both growth and esterase production while starch, inulin, tributyrin or glycerol showed no effect. Complex nitrogen sources such as tryptone or yeast extract increased growth and esterase production while mineral sources (ammonium chloride or sulfate), glycine or glutamate showed no effect. An increase of tryptone plus yeast extract and glucose concentrations stimulated growth and esterase production which reached 160 U L−1. Received 17 March 1999/ Accepted in revised form 25 June 1999  相似文献   

18.
The regulation of the synthesis of bacteriocin produced by the recombinant strain Lactococcus lactis subsp. lactis F-116 has been studied. The synthesis is regulated by the components of the fermentation medium, the content of inorganic phosphate (KH2PO4), yeast autolysate (source of amine nitrogen), and changes in carbohydrates and amino acids. The strain was obtained by fusion of protoplasts derived from two related L. lactis subsp. lactis strains, both exhibiting a weak ability to synthesize the bacteriocin nisin. Decreasing the content of KH2PO4 from 2.0 to 1.0 or 0.5% caused bacteriocin production to go down from 4100 to 2800 or 1150 IU/ml, respectively; the base fermentation medium contained 1.0% glucose, 0.2% NaCl, 0.02% MgSO4, and yeast autolysate (an amount corresponding to 35 mg % ammonium nitrogen). The substitution of sucrose for glucose (as the source of carbon) increased the antibiotic activity by 26%, and the addition of isoleucine, by 28.5%. Elevation of the concentration of yeast autolysate in the low-phosphate fermentation medium stimulated both the growth of the lactococci and the synthesis of bacteriocin. Introduction of 1% KH2PO4, yeast autolysate (an amount corresponding to 70 mg % ammonium nitrogen), 2.0% sucrose, and 0.1% isoleucine increased the bacteriocin-producing activity of the strain by 2.4 times.  相似文献   

19.
Bacillus licheniformis ATCC 9945a is one of the bacterial strains that produce gamma-poly(glutamic acid) (gamma-PGA). The use of carbohydrate medium components for gamma-PGA production was explored. Cells were grown in shake flasks or in controlled pH fermentors using medium formulations that contain different carbon sources. During the cultivations, aliquots were removed to monitor cell growth, carbon utilization, polymer production, and polymer molecular weight. Glucose was a better carbon source than glycerol for cell growth. Furthermore, glucose was utilized at a faster rate than glycerol, citrate, or glutamate. However, by using mixtures of glucose and glycerol in medium formulations, the efficiency of gamma-PGA production increased. For example, by increasing the glycerol in medium formulations from 0 to 40 g/L, the gamma-PGA broth concentration after 96 h increased from 5.7 to 20.5 g/L. Considering that glycerol utilization was low for the glucose/glycerol mixtures studied, it was unclear as to the mechanism by which glycerol leads to enhanced product formation. Cell growth and concomitant gamma-PGA production (12 g/L) at pH 6.5 was possible using glucose as a carbon source if trace amounts (0.5 g/L each) of citrate and glutamate were present in the medium. We suggested that citrate and glutamate were useful in preventing salt precipitation from the medium. In addition, glutamate may be preferred relative to ammonium chloride as a nitrogen source. The conversion of glucose to gamma-PGA by the strain ATCC 9945a was believed to occur by glycolysis of glucose to acetyl-CoA and tricarboxylic acid (TCA) cycle intermediates that were then metabolized via the TCA cycle to form alpha-ketoglutarate, which is a direct glutamate precursor.  相似文献   

20.
Summary Low molecular weight nitrogenous impurity compounds as well as raffinose are negative quality factors that interfere with efficient processing of sugarbeet (Beta vulgaris L.) for sucrose. In order to identify nutrient media for cell selection of biochemical mutants or transgenics that might have reduced levels of these processing impurities, the ability of 10 endogenous compounds to serve as sole nitrogen or carbon source for suspension plating and subculture callus growth was evaluated. The most productive concentrations of nitrate, ammonium, l-glutamine, l-glutamate, urea, and l-proline as sole nitrogen sources supported plating callus growth at 106, 159, 233, 167, 80, and 52%, respectively, as well as the historical 60 mM mix of nitrate and ammonium in Murashige-Skoog medium. Glycine betaine and choline did not support growth. d(+) Raffinose and d(+) galactose supported plating callus growth only 67 and 25%, respectively, as well as sucrose as sole carbohydrate source. No callus growth occurred on glutamine, glutamate, or glycine betaine as the sole carbon or carbon plus nitrogen source. Platings on either nitrate or ammonium as sole nitrogen source did not differ in sensitivity to the nitrate uptake inhibitor phenylglyoxal, suggesting that phenylglyoxal lacks the specificity for use in selection for mutants of nitrate uptake. The ability of raffinose to be used as the carbon source, and glutamine or glutamate as the nitrogen source, may preclude their use for selection of genetic variants accumulating less of these processing impurities. However, mutants or transgenics able to utilize either glutamine, glutamate, or glycine betaine might be selectable on media containing any one of these as carbon, nitrogen, or carbon plus nitrogen source, respectively, that is incapable of supporting wild-type cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号