首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP–NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant β R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge α-helix, the extended fork loop, the active site, and the trigger loop–trigger helix is apparent and adversely affected in β R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site “latch” assembly that includes a key trigger helix residue Tt β′ H1242 and highly conserved active site residues β E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed.  相似文献   

5.
6.
7.
Huang J  Brieba LG  Sousa R 《Biochemistry》2000,39(38):11571-11580
We have characterized the misincorporation properties of wild-type (wt) T7 RNAP and of 45 T7RNAP point mutants. The wt enzyme selects strongly against incorporation of an incorrect nucleotide. From the measured rates of misincorporation, an average error frequency of 1 in 2 x 10(4) is estimated. RNAs bearing 3'-mismatches are extended more slowly than correctly paired 3'-termini, and mismatches one or two bases away from the RNA 3'-end can also slow extension severely even when the 3'-base is correctly paired. Though it has been reported that T7RNAP has a 3' --> 5' nuclease activity, we were unable to detect any endogenous T7RNAP RNase activity in elongation complexes. Pyrophosphorolysis was detected but does not appear to contribute to proofreading. Therefore, unlike other RNAPs, T7RNAP fidelity appears to depend entirely on discrimination against incorporation of the incorrect nucleotide and not on post-misincorporation proofreading. Alanine substitution of the H784 side chain, which interacts with the 3' RNA.template base pair, increases both misincorporation and mismatch extension, while substitutions at G640, F644, and G645 increase misincorporation, but not mismatch extension. The latter three amino acids are in a part of the RNAP which interacts with the templating base and with the base immediately 5' to the templating base. Mutation of these amino acids not only increases misincorporation, but also eliminates pausing during promoter clearance. The effects of these mutations and the interactions observed in a crystal structure of a transcribing complex indicate that these mutations disrupt interactions which limit misincorporation rates by stabilizing the catalytically incompetent open conformation of the RNAP.  相似文献   

8.
9.
Nucleic acid polymerases have evolved elaborate mechanisms that prevent incorporation of the non-cognate substrates, which are distinguished by both the base and the sugar moieties. While the mechanisms of substrate selection have been studied in single-subunit DNA and RNA polymerases (DNAPs and RNAPs, respectively), the determinants of substrate binding in the multisubunit RNAPs are not yet known. Molecular modeling of Thermus thermophilus RNAP-substrate NTP complex identified a conserved beta' subunit Asn(737) residue in the active site that could play an essential role in selection of the substrate ribose. We utilized the Escherichia coli RNAP model system to assess this prediction. Functional in vitro analysis demonstrates that the substitutions of the corresponding beta' Asn(458) residue lead to the loss of discrimination between ribo- and deoxyribonucleotide substrates as well as to defects in RNA chain extension. Thus, in contrast to the mechanism utilized by the single-subunit T7 RNAP where substrate selection commences in the inactive pre-insertion site prior to its delivery to the catalytic center, the bacterial RNAPs likely recognize the sugar moiety in the active (insertion) site.  相似文献   

10.
11.
12.
The DNA polymerase beta mutant enzyme, which is altered from glutamic acid to lysine at position 249, exhibits a mutator phenotype in primer extension assays and in the herpes simplex virus-thymidine kinase (HSV-tk) forward mutation assay. The basis for this loss of accuracy was investigated by measurement of misincorporation fidelity in single turnover conditions. For the four misincorporation reactions investigated, the fidelity of the E249K mutant was not significantly different from wild type, implying that the mutator phenotype was not caused by a general inability to distinguish between correct and incorrect bases during the incorporation reaction. However, the discrimination between correct and incorrect substrates by the E249K enzyme occurred less during the conformational change and chemical steps and more during the initial binding step, compared with pol beta wild type. This implies that the E249K mutation alters the kinetic mechanism of nucleotide discrimination without reducing misincorporation fidelity. In a missing base primer extension assay, we observed that the mutant enzyme produced mispairs and extended them. This indicates that the altered fidelity of E249K could be due to loss of discrimination against mispaired primer termini. This was supported by the finding that the E249K enzyme extended a G:A mispair 8-fold more efficiently than wild type and a C:T mispair 4-fold more efficiently. These results demonstrate that an enhanced ability to extend mispairs can produce a mutator phenotype and that the Glu-249 side chain of DNA polymerase beta is critical for mispair extension fidelity.  相似文献   

13.
14.
15.
16.
We have quantified the fidelity of polymerization of DNA by human mitochondrial DNA polymerase using synthetic DNA oligonucleotides and recombinant holoenzyme and examining each of the possible 16-base pair combinations. Although the kinetics of incorporation for all correct nucleotides are similar, with an average Kd of 0.8 microM and an average k(pol) of 37 s(-1), the kinetics of misincorporation vary widely. The ground state binding Kd of incorrect bases ranges from a low of 25 microM for a dATP:A mispair to a high of 360 microM for a dCTP:T mispair. Similarly, the rates of incorporation of incorrect bases vary from 0.0031 s(-1) for a dCTP:C mispair to 1.16 s(-1) for a dGTP:T mispair. Due to the variability in the kinetic parameters for misincorporation, the estimates of fidelity range from 1 error in 3563 nucleotides for dGTP:T to 1 error in 2.3 x 10(6) nucleotides for dCTP:C. Interestingly, the discrimination against a dGTP:T mismatch is 16.5 times lower than that of a dTTP:G mismatch due to a tighter Kd for ground state binding and a faster rate of incorporation of the dGTP:T mismatch relative to the dTTP:G mismatch. We calculate an average fidelity of 1 error in 440,000 nucleotides.  相似文献   

17.
The O-helix of DNA polymerases has been implicated in substrate discrimination and replication fidelity. In this study, wild-type Thermus aquaticus DNA polymerase I (Taq pol I) and an O-helix mutant A661E was examined for their ability to discriminate between ribonucleotides and deoxyribonucleotides. Steady-state nucleotide extension kinetics were carried out using a template cytidine and each nucleotide dNTP and rGTP. Wild-type Taq pol I and A661E demonstrated similar Vmax and Km values for the correct nucleotide dGTP. However, A661E discriminated between incorrect and correct nucleotide less well than wild-type; discrimination was reduced by factors of 9.5-, 5.6- and 15-fold for dATP, dTTP and rGTP, respectively. These data suggest that A661E is efficient polymerases in the presence of the correct deoxynucleotide, dGTP, but it is impaired in ability to discriminate between correct and incorrect deoxyribonucleotides or between ribo- and deoxyribonucleotides. A structural model of Taq pol I is described in which the mutation A661E alters the interactions between the O-helix and the terminal two phosphate groups in the primer strand.  相似文献   

18.
We have isolated and characterized a number of bacteriophage T7 RNAP (RNA polymerase) null mutants. Most of the mutants found to be completely inactive in vitro map to one of the well-conserved blocks of residues in the family of RNAPs homologous to T7 RNAP. The in vitro phenotypes of a smaller number of partially active T7 RNAP mutants, mapping outside these well-conserved regions, support the following assignment of functions in T7 RNAP: (1) the N-terminal region of T7 RNAP contains a nascent RNA binding site that functions to retain the nascent chain within the ternary complex; (2) the region surrounding residue 240 is involved in binding the initiating NTP; (3) residues at the very C terminus of T7 RNAP are involved in binding the elongating NTP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号