首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Na+-independent Mg2+ efflux from Mg2+-loaded human erythrocytes   总被引:1,自引:0,他引:1  
T Günther  J Vormann 《FEBS letters》1989,247(2):181-184
Net Mg2+ efflux from Mg2+-loaded human erythrocytes was maximal after reincubation in sucrose. Net Mg2+ efflux was not inhibited by furosemide or bumetanide and, therefore, was not performed by the (Na,K,Cl)- or (K,Cl)-cotransport system. A component of net Mg2+ efflux was inhibited by extracellular NaC1, KCl, LiCl, choline Cl and SITS, in analogy to the inhibition of net Cl- and SITS. Therefore, it was concluded that net Mg2+ efflux is dependent on net Cl- efflux for charge compensation. Cl- -dependent net Mg2+ efflux was inhibited by amiloride. Only 10% of the maximal net Mg2+ efflux may depend on extracellular Na+.  相似文献   

2.
Non-Mg(2+)-loaded rat erythrocytes with a physiological level of Mg(2+)(i) exhibited Mg(2+) efflux when incubated in nominally Mg(2+)-free media. Two types of Mg(2+) efflux were shown: (1) An Na(+)-dependent Mg(2+) efflux in NaCl and Na gluconate medium, which was inhibited by amiloride and quinidine, as was Na(2+)/Mg(2+) antiport in Mg(2+)-loaded rat erythrocytes; and (2) an Na(+)-independent Mg(2+) efflux in sucrose medium and choline Cl medium, which may be differentiated into SITS-sensitive Mg(2+) efflux at low Cl(-)(o) (in sucrose) and into SITS-insensitive Mg(2+) efflux at high Cl(-)(o) (in 150 mmol/l choline Cl).  相似文献   

3.
Two types of Na(+)-independent Mg(2+) efflux exist in erythrocytes: (1) Mg(2+) efflux in sucrose medium and (2) Mg(2+) efflux in high Cl(-) media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na(+)-independent Mg(2+) efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K(+),Cl(-)- and Na(+),K(+),Cl(-)-symport, Na(+)/H(+)-, Na(+)/Mg(2+)-, Na(+)/Ca(2+)- and K(+)(Na(+))/H(+) antiport, Ca(2+)-activated K(+) channel and Mg(2+) leak flux. We suggest that, in choline Cl medium, Na(+)-independent Mg(2+) efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg(2+) efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg(2+) to the same degree. The K(d) value for inhibition of [(14)C]choline efflux and for inhibition of Mg(2+) efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg(2+) efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg(2+) efflux was reduced to the same degree by these inhibitors as was the [(14)C]choline efflux.  相似文献   

4.
In order to characterize the transport systems mediating K+ uptake into oocytes, flux studies employing 86Rb were performed on Xenopus oocytes stripped of follicular cells by pretreatment with Ca2(+)-Mg2(+)-free Barth's medium. Total Rb+ uptake consisted of an ouabain-sensitive and an ouabain-insensitive flux. In the presence of 100 mmol/l NaCl and 0.1 mmol/l ouabain the ouabain-insensitive flux amounted to 754.7 +/- 59.9 pmol/oocyte per h (n = 30 cells, i.e., 10 cells each from three different animals). In the absence of Na+ (Na+ substituted by N-methylglucamine) or when Cl- was replaced by NO3- the ouabain-insensitive flux was reduced to 84.4 +/- 42.9 and 79.2 +/- 12.1 pmol/oocyte per h, respectively (n = 50 cells). Furthermore, this Na(+)- and Cl(-)-dependent flux was completely inhibited by 10(-4) mol/l bumetanide, a specific inhibitor of the Na(+)-K(+)-2Cl- cotransport system. These results suggest that K+ uptake via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport system represents a major K+ pathway in oocytes.  相似文献   

5.
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl- was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCalpha. In non-Mg2+ -loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+ -loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCalpha or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+ -loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+ -loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl-. Mg2+ -loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl-]i.  相似文献   

6.
Ebel H  Günther T 《FEBS letters》2003,543(1-3):103-107
Mg(2+) efflux from rat erythrocytes was measured in NaCl, NaNO(3), NaSCN and Na gluconate medium. Substitution of extracellular and intracellular Cl(-) with the permeant anions NO(3)(-) and SCN(-) reduced Mg(2+) efflux via Na(+)/Mg(2+) antiport. After substitution of extracellular Cl(-) with the non-permeant anion gluconate, Mg(2+) efflux was not significantly reduced. In Na gluconate medium, an influence of the changed membrane potential and intracellular pH on Mg(2+) efflux could be excluded. The results indicate the existence of Cl(-)-independent Na(+)/Mg(2+) antiport and of Na(+)/Mg(2+) antiport stimulated by intracellular Cl(-). Intracellular Cl(-), as determined by means of (36)Cl(-), was found to stimulate Na(+)/Mg(2+) antiport through a cooperative effect according to a sigmoidal kinetics. The Hill coefficient for intracellular Cl(-) amounted to 1.4-1.8, indicating that two intracellular Cl(-) may be simultaneously active. With respect to specificity, Cl(-) was most effective, followed by Br(-), J(-), and F(-). Stimulation of Na(+)/Mg(2+) antiport by intracellular Cl(-) together with intracellular Mg(2+) may play a role during deoxygenation of erythrocytes and in essential hypertension.  相似文献   

7.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

8.
An Na+-stimulated Mg2+-transport system in human red blood cells   总被引:5,自引:0,他引:5  
The initial rate of net Mg2+ efflux was measured in human red blood cells by atomic absorption. In fresh erythrocytes incubated in Na+,K+-Ringer's medium this rate was 7.3 +/- 2.8 mumol/l cells per h (mean +/- S.D. of 14 subjects) with an energy of activation of 13 200 cal/mol. Cells with total Mg2+ contents ([ Mg]i) ranging from 1.8 to 24 mmol/l cells were prepared by using a modified p-chloromercuribenzenesulphonate method. Mg2+ efflux was strongly stimulated by increases in [Mg]i and in external Na+ concentrations ([ Na]o). A kinetic analysis of Mg2+ efflux as a function of [Mg]i and [Na]o revealed the existence of two components: an Na+-stimulated Mg2+ efflux, which exhibited a Michaelian-like dependence of free internal Mg2+ content (apparent dissociation constant = 2.6 +/- 1.4 mmol/l cells; mean +/- S.D. of six subjects) and on external Na+ concentration (apparent dissociation constant = 20.5 +/- 1.9 mM; mean +/- S.D. of four subjects) and a variable maximal rate ranging from 35 to 370 mumol/l cells per h, and an Na+-independent Mg2+ efflux, which showed a linear dependence on internal Mg2+ content with a rate constant of (6.6 +/- 0.7) X 10(-3) h-1. Fluxes catalyzed by the Na+-stimulated Mg2+ carrier were partially dependent on the ATP content of the cells and completely inhibited by quinidine (IC50 = 50 microM) and by Mn2+ (IC50 = 0.5-1.0 mM).  相似文献   

9.
During net Mg2+ efflux from Mg2+-preloaded chicken erythrocytes, which occurs via Na+/Mg2+ antiport, 28Mg2+ is taken up intracellularly. Km of 28Mg2+ influx amounted to 1 mM. In Na+-free medium Vmax of 28Mg2+ influx was increased and Km was reduced to 0.2 mM. 28Mg2+ influx was noncompetitively inhibited by amiloride as was found for Na+/Mg2+ antiport. The results indicate that, extracellularly, Mg2+ can compete with Na+ for common binding sites of the Na+/Mg2+ antiporter, resulting in 28Mg2+-24Mg2+ exchange. The rate of Mg2+ exchange depends on extracellular Na+ and on the rate of net Mg2+ efflux.  相似文献   

10.
We have investigated Cl- transport mechanism(s) located in the basolateral membranes of the frog skin epithelium and in particular activation of Cl-/HCO3- exchange following an alkaline load. We found that 87% of the total 36Cl uptake by the epithelial cells occurs across the basolateral membranes (JbCl-) and submitting the epithelium to an alkaline load (HCO3(-)-Ringer solution, pH 8.1) increased JbCl-. Intracellular Cl- activity (aiCl-), measured with ion-sensitive microelectrodes, increased when the Ringer solution bathing the basolateral membranes was changed from a Ringer solution equilibrated in air (pH 7.4) to one containing CO2/HCO3- (pH 7.4). pHi recovery following an alkaline load was dependent on Cl- since it did not occur in serosal Cl(-)-free media, indicating the presence of a Cl(-)-dependent regulatory mechanism. Acid loading of the epithelial cells (5% CO2, HCO3(-)-free Ringer) produced no change in JbCl- but stimulated an amiloride-sensitive 22Na uptake across the basolateral membranes of the epithelium, compatible with an activation of a Na+/H+ exchanger, previously described in this tissue. JbCl- was partially blocked by SITS (5 x 10(-4) mmol/I), niflumic acid (5 x 10(-5) mmol/I), furosemide or bumetanide. Simultaneous addition of furosemide and niflumic acid produced an inhibition of JbCl- which was not different with furosemide alone. Substitution of Na+ by choline had no effect on JbCl- and furosemide did not block the 22Na+ uptake, suggesting that JbCl- is not a Na(+)-dependent process (cotransport). We conclude that a significant Cl- permeability at the basolateral membranes of the epithelial cells is due to the presence of a Cl-/HCO3- exchanger which is essential for the recovery of pHi following an alkaline load.  相似文献   

11.
In red cells of several species, the sulfhydryl reagent N-ethylmaleimide activates a Cl- -dependent, ouabain-resistant K+ transport pathway. Here we report our attempts to demonstrate ouabain-resistant Cl- -dependent K+ fluxes stimulated by N-ethylmaleimide in resealed human red cell ghosts using Rb+ as a K+ analogue. In contrast to intact cells, the rate constants of the base level Rb+ efflux in ghosts were similar in NaNO3 and NaCl (okRb = 0.535 +/- 0.079 h-1 and 0.534 +/- 0.085 h-1, respectively), while 1 mM N-ethylmaleimide stimulated Rb+ efflux strongly in NaNO3 (okRb = 14.26 +/- 1.32 h-1) and moderately in NaCl (okRb = 2.73 +/- 0.54 h-1). This effect was dependent on the presence of internal ATP. Stimulation of Rb+ efflux was observed in the presence of greater than or equal to 0.2 mM N-ethylmaleimide and increased at pH values approaching 8.0, consistent with titration of SH groups. N-Ethylmaleimide-stimulated Rb+ efflux was approx. 50% inhibited by 100 microM quinine sulfate whereas 1 microM bumetanide had no effect. In NaCl the N-ethylmaleimide-stimulated efflux saturated with initial internal ghost Rb+ concentration, but rates increased linearly in NaNO3. Replacement of external Na+ with glucamine or choline decreased the N-ethylmaleimide-stimulated Rb+ efflux, suggesting a role for external Na+. N-Ethylmaleimide-stimulated Rb+ efflux was greater in buffers with lipophilic anions such as SCN- or NO3- than in solutions with Cl- or acetate. However, the cation selectivity of the pathway studied was low, as Li+ efflux was also stimulated by N-ethylmaleimide. We conclude that the effect of N-ethylmaleimide on ouabain-resistant cation effluxes of human red cell ghosts is very different from the selective action of N-ethylmaleimide on Rb+ influxes in intact red cells.  相似文献   

12.
U937 cell possess two mechanisms that allow them to recover from an intracellular acidification. The first mechanism is the amiloride-sensitive Na+/H+ exchange system. The second system involves bicarbonate ions. Its properties have been defined from intracellular pH (pHi) recovery experiments, 22Na+ uptake experiments, 36Cl- influx and efflux experiments. Bicarbonate induced pHi recovery of the cells after a cellular acidification to pHi = 6.3 provided that Na+ ions were present in the assay medium. Li+ or K+ could not substitute for Na+. The system seemed to be electroneutral. 22Na+ uptake experiments showed the presence of a bicarbonate-stimulated uptake pathway for Na+ which was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate. The bicarbonate-dependent 22Na+ uptake component was reduced by depleting cells of their internal Cl- and increased by removal of external Cl-. 36Cl- efflux experiments showed that the presence of both external Na+ and bicarbonate stimulated the efflux of 36Cl- at a cell pHi of 6.3. Finally a 36Cl- uptake pathway was documented. It was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate (K0.5 = 10 microM) and bicarbonate (K0.5 = 2 mM). These results are consistent with the presence in U937 cells of a coupled exchange of Na+ and bicarbonate against chloride. It operates to raise the intracellular pH. Its pHi and external Na+ dependences were defined. No evidence for a Na+-independent Cl-/HCO3- exchange system could be found. The Na+-dependent Cl-/HCO3- exchange system was relatively insensitive to (aryloxy)alkanoic acids which are potent inhibitors of bicarbonate-induced swelling of astroglia and of the Li(Na)CO3-/Cl- exchange system of human erythrocytes. It is concluded that different anionic exchangers exist in different cell types that can be distinguished both by their biochemical properties and by their pharmacological properties.  相似文献   

13.
The effect of a transmembrane pH gradient on the ouabain, bumetanide, and phloretin resistant H+ efflux was studied in rabbit erythrocytes. Proton equilibration was reduced by the use of DIDS (125 microM) and acetazolamide (1 mM). H+ efflux from acid loaded erythrocytes (pHi = 6.1) was measured in a K+ (145 mM) medium, pH0 = 8.0, in the presence and absence of 60 microM 5,N,N-dimethyl-amiloride (DMA). The H+ efflux rate in a K+-containing medium was 116.38 +/- 4.5 mmol/l cell X hr. Substitution of Nao+ for Ko+ strongly stimulated H+ efflux to 177.89 +/- 7.9 mmol/l cell X hr. The transtimulation of H+ efflux by Nao+ was completely abolished by DMA falling to values not different from controls with an ID50 of about 8.6 X 10(-7) M. The sequence of substrate selectivities for the external transport site were Na greater than greater than greater than Li greater than choline, Cs, K, and Glucamine. The transport system has no specific anion requirement, but is inhibited by NO3-. The DMA sensitive H+ efflux was a saturable function of [Na+]o, with an apparent Km and Vmax of about 14.75 +/- 1.99 mM and 85.37 +/- 7.68 mmol/l cell X hr, respectively. However, the Nao+-dependent and DMA-sensitive H+ efflux was sigmoidally activated by [H+]i, suggesting that Hi+ interacts at both transport and modifier sites. An outwardly directed H+ gradient (pHi 6.1, pH = 8.0) also promoted DMA sensitive Na+ entry (61.2 +/- 3.0 mmol/l cell X hr) which was abolished when pHo was reduced to 6.0. The data is therefore consistent with the presence of a Na+/H+ exchange system in rabbit erythrocytes.  相似文献   

14.
The PS120 variant of Chinese hamster lung fibroblasts which lacks Na+/H+ exchange activity was used to investigate bicarbonate transport systems and their role in intracellular pH (pHi) regulation. When pHi was decreased by acid load, bicarbonate caused pHi increase and stimulated 36Cl- efflux from the cells, both in a Na+-dependent manner. These results together with previous findings that bicarbonate stimulates 22Na+ uptake in PS120 cells (L'Allemain, G., Paris, S., and Pouyssegur, J. (1985) J. Biol. Chem. 260, 4877-4883) demonstrate the presence of a Na+-linked Cl-/HCO3- exchange system. In cells with normal initial pHi, bicarbonate caused Na+-independent pHi increase in Cl(-)-free solutions and stimulated Na+-independent 36Cl- efflux, indicating that a Na+-independent Cl-/HCO3- exchanger is also present in the cell. Na+-linked and Na+-independent Cl-/HCO3- exchange is apparently mediated by two distinct systems, since a [(tetrahydrofluorene-7-yl)oxy]acetic acid derivative selectively inhibits the Na+-independent exchanger. An additional distinctive feature is a 10-fold lower affinity for chloride of the Na+-linked exchanger. The Na+-linked and Na+-independent Cl-/HCO3- exchange systems are likely to protect the cell from acid and alkaline load, respectively.  相似文献   

15.
Mg2(+)-loaded rat erythrocytes performed Mn2+/Mg2+ antiport, which was nonspecifically stimulated by anions and cations. Mn2+/Mg2+ antiport was shown to operate via the Na+/Mg2+ antiporter because extracellular Na+ and Mn2+ inhibited the intracellular uptake of each other's ions competitively. Furthermore, Mn2+/Mg2+ antiport and Na+/Mg2+ antiport were identically inhibited by various amiloride derivatives. Na+/Mg2+ antiport of chicken and human erythrocytes cannot perform Mn2+/Mg2+ antiport although chicken erythrocytes took up more Mn2+ than rat erythrocytes.  相似文献   

16.
Pathways for Ca2+ efflux in heart and liver mitochondria.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Two processes of Ruthenium Red-insensitive Ca2+ efflux exist in liver and in heart mitochondria: one Na+-independent, and another Na+-dependent. The processes attain maximal rates of 1.4 and 3.0 nmol of Ca2+.min-1.mg-1 for the Na+-dependent and 1.2 and 2.0 nmol of Ca2+.min-1.mg-1 for the Na+-independent, in liver and heart mitochondria, respectively. 2. The Na+-dependent pathway is inhibited, both in heart and in liver mitochondria, by the Ca2+ antagonist diltiazem with a Ki of 4 microM. The Na+-independent pathway is inhibited by diltiazem with a Ki of 250 microM in liver mitochondria, while it behaves as almost insensitive to diltiazem in heart mitochondria. 3. Stretching of the mitochondrial inner membrane in hypo-osmotic media results in activation of the Na+-independent pathway both in liver and in heart mitochondria. 4. Both in heart and liver mitochondria the Na+-independent pathway is insensitive to variations of medium pH around physiological values, while the Na+-dependent pathway is markedly stimulated parallel with acidification of the medium. The pH-activated, Na+-dependent pathway maintains the diltiazem sensitivity. 5. In heart mitochondria, the Na+-dependent pathway is non-competitively inhibited by Mg2+ with a Ki of 0.27 mM, while the Na+-independent pathway is less affected; similarly, in liver mitochondria Mg2+ inhibits the Na+-dependent pathway more than it does the Na+-independent pathway. In the presence of physiological concentrations of Na+, Ca2+ and Mg2+, the Na+-independent and the Na+-dependent pathways operate at rates, respectively, of 0.5 and 1.0 nmol of Ca2+.min-1.mg-1 in heart mitochondria and 0.9 and 0.2 nmol of Ca2+.min-1.mg-1 in liver mitochondria. It is concluded that both heart and liver mitochondria possess two independent pathways for Ca2+ efflux operating at comparable rates.  相似文献   

17.
To determine Na+/H+ exchange in lamprey erythrocyte membranes, the cells were acidified to pH(i) 6.0 using the K+/H+ ionophore nigericin. Incubation of acidified erythrocytes in a NaCl medium at pH 8.0 caused a considerable rise in 22Na+ influx and H+ efflux during the first 1 min of exposure. In addition, exposure of acidified red cells to NaCl medium was associated with rapid elevation of intracellular Na+ content. The acid-induced changes in Na+ influx and H+ efflux were almost completely inhibited by amiloride and dimethylamiloride. In native lamprey erythrocytes, amiloride-sensitive Na+ influx progressively increased as the osmolality of incubation medium was increased by addition of 100, 200, or 300 mmol/l sucrose. Unexpectedly, the hypertonic stress induced a small, yet statistically significant decrease in intracellular Na+ content in these cells. The reduction in the cellular Na+ content increased with hypertonicity of the medium. The acid- and shrinkage-induced Na+ influxes were inhibited by both amiloride and 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) in a dose-dependent manner. For both blockers, the half-maximal inhibitory values (IC50) were much greater for the shrinkage-induced (44 and 15 micromol/l for amiloride and EIPA, respectively) than for the acid-induced Na+ influx (5.1 and 3.3 micromol/l, respectively). The data obtained are the first demonstration of the presence of a Na+/H+ exchanger with high activity in acidified (pH(i) 6.0) lamprey red blood cells (on average, 512 +/- 56 mmol/l cells/h, n = 13). The amiloride-sensitive Na+ influxes produced by hypertonic cell shrinkage and acid load are likely to be mediated by distinct ion transporters in these cells.  相似文献   

18.
The ion transport system responsible for intracellular pH (pHi) regulation in squid giant axons was examined in experiments with pH- sensitive microelectrodes and isotopic fluxes of Na+ and Cl-. In one study, axons were acid-loaded and the rate of the subsequent pHi recovery was used to calculate the acid extrusion rate. There was an absolute dependence of acid extrusion on external Na+, external HCO-3 (at constant pH), and internal Cl-. Furthermore, the dependence of the acid extrusion rate on each of these three parameters was described by Michaelis-Menten kinetics. Acid extrusion was stimulated by an acid pHi, required internal ATP, and was blocked by external 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). Under a standard set of conditions (i.e., [HCO-3]o = 12 mM, pHo = 8.00, [Na+]o = 425 mM, [Cl-]i = 150 mM, [ATP]i = 4 mM, pHi = 6.5, and 16 degrees C), the mean acid extrusion rate was 7.5 pmol X cm-2 X s-1. In a second study under the above standard conditions, the unidirectional Na+ efflux (measured with 22Na) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean influx was about 3.4 pmol X cm-2 X s- 1. This net influx required external HCO-3, internal Cl-, and acid pHi, internal ATP, and was blocked by SITS. In the final series of experiments under the above standard conditions, the unidirectional Cl- influx (measured with 36Cl) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean efflux was approximately 3.9 pmol X cm-2 X s-1. This net efflux required external HCO-3, external Na+, an acid pHi, internal ATP, and was blocked by SITS. We conclude that the pHi-regulating system mediates the obligate net influx of HCO-3 (or equivalent species) and Na+ and the net efflux of Cl- in the stoichiometry of 2:1:1. The transport system is stimulated by intracellular acid loads, requires ATP, and is blocked by SITS.  相似文献   

19.
Calcium efflux from bovine chromaffin cells in tissue culture has been examined after loading them with small amounts of Ca2+ by brief depolarization in media containing 20 mumol/l to 1 mmol/l Ca2+ and 45Ca2+ in trace amounts. In the presence of normal external Na+ and Ca2+ concentrations cells depolarized in media containing up to 200 mumol/l Ca2+ exported nearly 100% of their accumulated Ca2+ loads within 10 min and 20% within the first 5 s. In the absence of external Na+ and Ca2+ the proportion of a small (i.e., depolarization in 20 mumol/l calcium) Ca2+ load exported at any time point in the range to 10 min was approximately two thirds of the total efflux measured in their presence indicating that under these conditions the external Na+/Ca(2+)-dependent and Na+/Ca(2+)-independent mechanisms both contribute significantly to the export of calcium. At higher cellular loads of calcium (i.e., depolarization in 200 mumol/l to 1 mmol/l calcium) the Na+/Ca(2+)-dependent mechanism exported a progressively greater proportion of the accumulated Ca2+. Both sodium and calcium alone promoted a component of Ca2+ efflux; Ca2+ (i.e. calcium-calcium exchange) was as effective as Na+ (i.e. sodium-calcium exchange). The Km for Na+ stimulation of Ca(2+)-efflux (KNa) was approximately 65 mM. Increased external Mg2+ (from 1.2 to 10 mmol/l) increased the apparent KNa to 90 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Transport systems y+, asc and ASC exhibit dual interactions with dibasic and neutral amino acids. For conventional Na(+)-dependent neutral amino acid system ASC, side chain amino and guanido groups bind to the Na+ site on the transporter. The topographically equivalent recognition site on related system asc binds harmaline (a Na(+)-site inhibitor) with the same affinity as asc (apparent Ki range 1-4 mM), but exhibits no detectable affinity for Ha. Although also classified as Na(+)-independent, dibasic amino acid transport system y+ accepts neutral amino acids when Na+ or another acceptable cation is also present. This latter observation implies that the y+ translocation site binds Na+ and suggests possible functional and structural similarities with ASC/asc. In the present series of experiments with human erythrocytes, system y(+)-mediated lysine uptake (5 microM, 20 degrees C) was found to be 3-fold higher in isotonic sucrose medium than in normal 150 mM NaCl medium. This difference was not a secondary consequence of changes in membrane potential, but resulted from Na+ functioning as a competitive inhibitor of transport. Apparent Km and Vmax values for lysine transport at 20 degrees C were 15.2 microM and 183 mumol/l cells per h, respectively, in sucrose medium and 59.4 microM and 228 mumol/l cells per h in Na+ medium. Similar results were obtained with y+ in erythrocytes of a primitive vertebrate, the Pacific hagfish (Eptatretus stouti), indicating that Na(+)-inhibition is a general property of this class of amino acid transporter. At a permeant concentration of 5 microM, the IC50 value for Na(+)-inhibition of lysine uptake by human erythrocytes was 27 mM. Other inorganic and organic cations, including K+ and guanidinium+, also inhibited transport. In parallel with its actions on ASC/asc harmaline competitively inhibited lysine uptake by human cells in sucrose medium. As predicted from mutually competitive binding to the y+ translocation site, the presence of 150 mM Na+ increased the harmaline inhibition constant (Ki) from 0.23 mM in sucrose medium to 0.75 mM in NaCl medium. We interpret these observations as further evidence that y+, asc and ASC represent a family of closely related transporters with a common evolutionary origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号