首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia is a common pathological process caused by insufficient oxygen. Long noncoding RNAs (lncRNAs) have been proven to participate in this pathology. Hypoxia is reported to significantly reduce the secretion of tissue inhibitor of metalloproteinase 2 (TIMP2) and TIMP2 induces pheochromocytoma-12 (PC12) cell cycle arrest. Thus, our study aimed to explore the mechanism by which lncRNA maternally expressed gene 3 (MEG3) was implicated in hypoxia-induced PC12 cell injury through TIMP2 promoter methylation. To elucidate the potential biological significance of MEG3 and the regulatory mechanism between MEG3 and TIMP2, a hypoxia-induced PC12 cell injury model was generated. The hypoxia-exposed cells were subjected to a series of overexpression plasmids and short hairpin RNAs, followed by the measurement of levels of MEG3, TIMP2, lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), reactive oxygen species (ROS), Bcl-2-associated X protein, B-cell lymphoma-2, and caspase-3, as well as the changes in MMP, cell proliferation, apoptosis, and cell cycle progression. On the basis of the findings, MEG3 was upregulated in hypoxia-injured PC12 cells. MEG3 recruited methylation proteins DNMT3a, DNMT3b, and MBD1 and accelerated TIMP2 promoter methylation, which in turn inhibited its expression. Moreover, PC12 cells following MEG3 silencing and TIMP2 overexpression exhibited significantly decreased levels of LDH, MDA, and ROS along with cell apoptosis, yet increased SOD and MMP levels, as well as cell cycle entry to the S phase and cell proliferation. In conclusion, MEG3 silencing suppresses hypoxia-induced PC12 cell injury by inhibiting TIMP2 promoter methylation. This study may provide novel therapeutic targets for hypoxia-induced injury.  相似文献   

2.
3.
Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.  相似文献   

4.
5.
‘Cardiosomes’ (exosomes from cardiomyocytes) have recently emerged as nanovesicles (30–100 nm) released in the cardiosphere by myocytes and cardiac progenitor cells, though their role in diabetes remains elusive. Diabetic cardiovascular complications are unequivocally benefitted from exercise; however, the molecular mechanisms need exploration. This novel study is based on our observation that exercise brings down the levels of activated (Matrix Metalloprotease 9) in db/db mice in a model of type 2 diabetes. We hypothesize that exosomes that are released during exercise contain microRNAs (mir455, mir29b, mir323‐5p and mir466) that bind to the 3′ region of MMP9 and downregulate its expression, hence mitigating the deleterious downstream effects of MMP9, which causes extracellular matrix remodeling. First, we confirmed the presence of exosomes in the heart tissue and serum by electron microscopy and flow cytometry, respectively, in the four treatment groups: (i) db/control, (ii) db/control+exercise, (iii) db/db and (iv) db/db+exercise. Use of exosomal markers CD81, Flottilin 1, and acetylcholinesterase activity in the isolated exosomes confirmed enhanced exosomal release in the exercise group. The microRNAs isolated from the exosomes contained mir455, mir29b, mir323‐5p and mir466 as quantified by qRTPCR, however, mir29b and mir455 showed highest upregulation. We performed 2D zymography which revealed significantly lowered activity of MMP9 in the db/db exercise group as compared to non‐exercise group. The immunohistochemical analysis further confirmed the downregulated expression of MMP9 after exercise. Since MMP9 is involved in matrix degradation and leads to fibrosis and myocyte uncoupling, the present study provides a strong evidence how exercise can mitigate these conditions in diabetic patients.  相似文献   

6.
Recent studies have indicated that nuclear protein of 95 kDa (Np95) is essential for maintaining genomic methylation by recruiting DNA methyltransferase (Dnmt) 1 to hemi‐methylated sites. Here, we show that Np95 interacts more strongly with regulatory domains of the de novo methyltransferases Dnmt3a and Dnmt3b. To investigate possible functions, we developed an epigenetic silencing assay using fluorescent reporters in embryonic stem cells (ESCs). Interestingly, silencing of the cytomegalovirus promoter in ESCs preceded DNA methylation and was strictly dependent on the presence of either Np95, histone H3 methyltransferase G9a or Dnmt3a and Dnmt3b. Our results indicate a regulatory role for Np95, Dnmt3a and Dnmt3b in mediating epigenetic silencing through histone modification followed by DNA methylation.  相似文献   

7.
Epigenetic dysregulation plays an important role in cancer. Histone demethylation is a well‐known mechanism of epigenetic regulation that promotes or inhibits tumourigenesis in various malignant tumours. However, the pathogenic role of histone demethylation modifiers in papillary thyroid cancer (PTC), which has a high incidence of early lymphatic metastasis, is largely unknown. Here, we detected the expression of common histone demethylation modifiers and found that the histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) demethylase KDM1A (or lysine demethylase 1A) is frequently overexpressed in PTC tissues and cell lines. High KDM1A expression correlated positively with age <55 years and lymph node metastasis in patients with PTC. Moreover, KDM1A was required for PTC cell migration and invasion. KDM1A knockdown inhibited the migration and invasive abilities of PTC cells both in vitro and in vivo. We also identified tissue inhibitor of metalloproteinase 1 (TIMP1) as a key KDM1A target gene. KDM1A activated matrix metalloproteinase 9 (MMP9) through epigenetic repression of TIMP1 expression by demethylating H3K4me2 at the TIMP1 promoter region. Rescue experiments clarified these findings. Altogether, we have uncovered a new mechanism of KDM1A repression of TIMP1 in PTC and suggest that KDM1A may be a promising therapeutic target in PTC.  相似文献   

8.
A fundamental challenge in the post-genomics era is to understand how genetic variants can influence phenotypic variability and disease. Recent observations from a number of studies have highlighted a mechanism by which common genetic polymorphisms can influence DNA methylation, a major epigenetic silencing mechanism. We report that the alternative promoter of the human TRPC3 gene is regulated by allelic DNA methylation, dictated by the genotype of a single base pair polymorphism, rs13121031 located within the promoter CpG island. The common G allele is associated with high levels of methylation, while the less prevalent C allele is unmethylated. This methylation profile is observed in many tissue types, despite the expression of?TRPC3?being restricted to brain and heart.?TRPC3?is prominently expressed in the hindbrain, and a heterozygous brain sample showed modest skewing according to the allelic methylation, with preferential expression from the C allele. The?TRPC3?gene encodes a transient receptor potential channel that has been implicated in cerebellar ataxia and heart hypertrophy. The genotype-frequencies of rs13121031 were determined in cohorts of ataxia patients and in individuals with cardiac hypertrophy. These analyses revealed a statistical trend for the rare unmethylated homozygous C genotype to be present at a higher frequency in idiopathic ataxia patients (Fisher's test p=0.06), but not in those patients with known mutations (Fisher's test p=0.55) or in individuals with heart disease (Fisher's test p=0.807), when compared to a control population. Our results suggest that the?TRPC3?alternative promoter is a methylation quantitative-trait locus that may be involved in modulating the ataxia phenotype.  相似文献   

9.
Anderson CL  Brown CJ 《Human genetics》2002,110(3):271-278
X chromosome inactivation results in dosage equivalency for X-linked gene expression between males and females. However, some X-linked genes show variable X inactivation, being expressed from the inactive X in some females but subject to inactivation in other women. The human tissue inhibitor of metalloproteinases-1 ( TIMP1) gene falls into this category. As TIMP1 and its target metalloproteinases are involved in many biological processes, women with elevated TIMP1 expression may exhibit different disease susceptibilities. To address the potential impact of variable X inactivation, we analyzed TIMP1 expression levels by using an RNase protection assay. The substantial variation of TIMP1 expression observed in cells with monoallelic TIMP1 expression precluded analysis of the contribution of the inactive X to total TIMP1 RNA levels in females, so we examined expression in rodent/human somatic cell hybrids. TIMP1 expression levels varied more widely in hybrids retaining an inactive X than in those with an active X chromosome, suggesting variable retention of the epigenetic silencing mechanisms associated with X inactivation. Therefore, we investigated the contribution of methylation at the promoter to expression level variation and found that methylation of the TIMP1 promoter correlated with instability and low level expression, whereas stable TIMP1expression from the inactive X equivalent to that seen from the active X chromosome was observed when the promoter was unmethylated. Since all female cell lines examined showed methylation of the TIMP1 promoter, the contribution of expression from the inactive X appears minimal. However, as women age, they may accumulate cells stably expressing TIMP1 from the inactive X, with a resulting increase of TIMP1, which may explain some sex differences in various late-onset disorders.  相似文献   

10.
We reported previously that although there is disruption of coordinated cardiac hypertrophy and angiogenesis in transition to heart failure, matrix metalloproteinase (MMP)-9 induced antiangiogenic factors play a vital role in this process. Previous studies have shown the cardioprotective role of hydrogen sulfide (H?S) in various cardiac diseases, but its role during transition from compensatory hypertrophy to heart failure is yet to be unveiled. We hypothesize that H?S induces MMP-2 activation and inhibits MMP-9 activation, thus promoting angiogenesis, and mitigates transition from compensatory cardiac hypertrophy to heart failure. To verify this, aortic banding (AB) was created to mimic pressure overload in wild-type (WT) mice, which were treated with sodium hydrosulfide (NaHS, H?S donor) in drinking water and compared with untreated control mice. Mice were studied at 3 and 8 wk. In the NaHS-treated AB 8 wk group, the expression of MMP-2, CD31, and VEGF was increased while the expression of MMP-9, endostatin, angiostatin, and tissue inhibitor of matrix metalloproteinase (TIMP)-3 was decreased compared with untreated control mice. There was significant reduction in fibrosis in NaHS-treated groups. Echocardiograph and pressure-volume data revealed improvement of cardiac function in NaHS-treated groups over untreated controls. These results show that H?S by inducing MMP-2 promotes VEGF synthesis and angiogenesis while it suppresses MMP-9 and TIMP-3 levels, inhibits antiangiogenic factors, reduces intracardiac fibrosis, and mitigates transition from compensatory hypertrophy to heart failure.  相似文献   

11.
Breast cancer (BC) is the most common tumour in women and one of the most important causes of cancer death worldwide. Radiation therapy (RT) is widely used for BC treatment. Some proteins have been identified as prognostic factors for BC (Ki67, p53, E‐cadherin, HER2). In the last years, it has been shown that variations in the expression of MMPs and TIMPs may contribute to the development of BC. The aim of this pilot work was to study the effects of RT on different MMPs (‐1, ‐2, ‐3, ‐7, ‐8, ‐9, ‐10, ‐12 and ‐13) and TIMPs (‐1 to ‐4), as well as their relationship with other variables related to patient characteristics and tumour biology. A group of 20 BC patients treated with RT were recruited. MMP and TIMP serum levels were analysed by immunoassay before, during and after RT. Our pilot study showed a slight increase in the levels of most MMP and TIMP with RT. However, RT produced a significantly decrease in TIMP‐1 and TIMP‐3 levels. Significant correlations were found between MMP‐3 and TIMP‐4 levels, and some of the variables studied related to patient characteristics and tumour biology. Moreover, MMP‐9 and TIMP‐3 levels could be predictive of RT toxicity. For this reason, MMP‐3, MMP‐9, TIMP‐3 and TIMP‐4 could be used as potential prognostic and predictive biomarkers for BC patients treated with RT.  相似文献   

12.
Reducing sympathetic neurohormone expression is a key therapeutic option in attenuating cardiac remodelling. Present study tested the feasibility of attenuating cardiac remodelling through reducing sympathetic neurohormone level by partial cardiac sympathetic denervation in a rat model of chronic volume overload. Male Sprague‐Dawley rats were randomized into sham group (S, n = 7), aortocaval fistula group (AV, n = 7), and aortocaval fistula with bilateral sympathetic stellate ganglionectomy group (AD, n = 8). After 12 weeks, myocardial protein expression of sympathetic neurohormones, including tyrosine hydroxylase, neuropeptide Y, growth associated protein 43, and protein gene product 9.5, were significantly up‐regulated in AV group compared to S group, and down‐regulated in AD group. Cardiac remodelling was aggravated in AV group compared to S group and attenuated in AD group. The myocardial deposition of extracellular matrix, including collagen I and III, was enhanced in AV group, which was reduced in AD group. Myocardial angiotensin II and aldosterone expressions were significantly up‐regulated in AV group and down‐regulated in AD group. Our results show that bilateral sympathetic stellate ganglionectomy could attenuate cardiac remodelling and fibrosis by down‐regulating sympathetic neurohormones expression in this rat model of chronic volume overload.  相似文献   

13.
14.
15.
《Epigenetics》2013,8(3):125-133
A synopsis will be presented of work on DNA methylation, the first epigenetic signal to be recognized. In the author´s laboratory, the following problems dealing with DNA methylation have been addressed over the past 32 years:(1) The de novo methylation of foreign DNA integrated into mammalian genomes. (2) Inverse correlations between promoter methylation and activity.(3) The long-term inactivating effect of site-specific promoter methylation. (4) Adenovirus E1 functions in trans and a strong enhancer in cis cancel the silencing effect of promoter methylation.(5) Frog virus 3, an iridovirus with a completely CpG-methylated genome. (6) Mechanisms of de novo methylation.(7) Different segments of the genome possess topical methylation memories.(8) Consequences of foreign DNA insertion into mammalian genomes: alterations of DNA methylation in cis and trans.(9) The epigenetic status of an adenovirus transgenome in Ad12-transformed hamster cells. (10) Cell type-specific patterns of DNA methylation: interindividual concordance in the human genome.  相似文献   

16.
Angiotensin-converting enzyme (ACE) inhibitors represent the front-line pharmacological treatment of heart failure, which is characterized by left ventricular (LV) dilatation and inappropriate hypertrophy. The mechanism of action of ACE inhibitors is still unclear, but evidence suggests that they may act by influencing matrix metalloproteinase (MMP) activity. This study sought to determine whether ACE inhibitors can directly regulate MMP activity and whether this results in positive structural and functional adaptations to the heart. To this end, MMP-2 activity in LV tissue extracted from rats with an aortocaval (AV) fistula was assessed by in vitro incubation as well as in vivo treatment with captopril, lisinopril, or quinapril. Furthermore, LV size and function were determined in untreated AV fistula rats, AV fistula rats treated with lisinopril (3, 5, and 8 wk), and age-matched sham-operated controls. In vitro incubation with captopril, lisinopril, or quinapril significantly reduced MMP-2 activity, as did in vivo treatment. This occurred without a reduction in the available pool of MMP-2 protein. Long-term in vivo administration of lisinopril also prevented LV dilatation, attenuated myocardial hypertrophy, and prevented changes in myocardial compliance and contractility. The results herein demonstrate that ACE inhibitors prevent MMP-2 activity and, in so doing, represent a mechanism responsible for preventing the negative structural and functional changes that occur in the rat AV fistula model of heart failure.  相似文献   

17.
18.
A recent study has shown that increased activity of matrix metalloproteinases‐2 and metalloproteinases‐9 (MMP‐2 and MMP‐9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP‐2 and MMP‐9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP‐1 and TIMP‐2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP‐2 and MMP‐9 and the protein abundance of TIMP‐1 and TIMP‐2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP‐2 at day 0, and increased MMP‐9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP‐2, MMP‐9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   

19.
Although matrix metalloproteinase-9 (MMP‐9) is involved in cardiomyocytes contractility dysfunction, tissue inhibitor of metalloproteinase-4 (TIMP‐4) mitigates the effect of MMP‐9, and proteinase-activated receptor-1 (PAR‐1, a G-protein couple receptor, GPCR) is involved in the signaling cascade of MMP‐9-mediated cardiac dysfunction, the mechanism(s) are unclear. To test the hypothesis that induction of dicer and differential expression of microRNAs (miRNAs) contribute, in part, to the down regulation of sarcoplasmic reticulum calcium ATPase isoform 2a (serca-2a) in MMP-9 and PAR-1-mediated myocytes dysfunction, ventricular cardiomyocytes were isolated from C57BL/6J mice and treated with 3 ng/ml of MMP-9, 12 ng/ml of TIMP-4, and 10 and 100 μM of PAR-1 antagonist with MMP-9. Specific role of MMP-9 was determined by using MMP-9 knock out (MMP-9KO) and their corresponding control (FVB) mice. Ion Optics video-edge detection system and Fura 2-AM loading were used for determining the contractility and calcium release from cardiomyocytes. Quantitative and semi-quantitative PCR were used to determine the expression of dicer, TIMP-4 and serca-2a. miRNA microarrays were used for assessing the expression of different miRNAs between MMP-9KO and FVB cardiomyocytes. The results suggest that MMP‐9 treatment attenuates the voltage‐induced contraction of primary cardiomyocytes while TIMP‐4, an inhibitor of MMP‐9, reverses the inhibition. MMP‐9 treatment is also associated with reduced Ca2+ transients. This effect is blocked by a PAR‐1 antagonist, suggesting that PAR‐1 mediates this effect. The effect is not as great at high concentrations (100 μM) perhaps due to mild toxicity. The PAR‐1 antagonist effect did not affect calcium transients unlike TIMP‐4. Interestingly, we show that MMP‐KO myocytes contract more rapidly and release more Ca2+ than FVB. The relevant RNA species serca-2a is induced and dicer is inhibited. There is selective inhibition of miR-376b and over-expression of miR-1, miR-26a, miR-30d, and miR-181c in MMP‐9KO that are implicated in regulation of G-PCR and calcium handling.  相似文献   

20.
The involvement of epigenetic alterations in the pathogenesis of melanoma is increasingly recognized. Here, we performed genome‐wide DNA methylation analysis of primary cutaneous melanoma and benign melanocytic nevus interrogating 14 495 genes using BeadChip technology. This genome‐wide view of promoter methylation in primary cutaneous melanoma revealed an array of recurrent DNA methylation alterations with potential diagnostic applications. Among 106 frequently hypermethylated genes, there were many novel methylation targets and tumor suppressor genes. Highly recurrent methylation of the HOXA9, MAPK13, CDH11, PLEKHG6, PPP1R3C, and CLDN11 genes was established. Promoter methylation of MAPK13, encoding p38δ, was present in 67% of primary and 85% of metastatic melanomas. Restoration of MAPK13 expression in melanoma cells exhibiting epigenetic silencing of this gene reduced proliferation, indicative of tumor suppressive functions. This study demonstrates that DNA methylation alterations are widespread in melanoma and suggests that epigenetic silencing of MAPK13 contributes to melanoma progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号