首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Aim This study investigates diversity patterns of vascular plants and plant‐feeding geometrid moths during montane rain forest regeneration in relation to the biogeographical and historical conditions of Mt Kilimanjaro. Location Investigations were undertaken on the south‐western slopes of Mt Kilimanjaro at altitudes between 2075 and 2265 m. Methods Thirteen plots were selected for this study. Four of these were situated in the middle of large clearings (> 1000 m2), three in secondary forest, two in mature forest remnants surrounded by secondary forest and four plots within continuous closed mature forest. Vascular plant species were recorded in an area of 20 × 20 m2. Geometrid moths were attracted using lamps placed inside reflective gauze cylinders. Results Ninety‐three species of vascular plants were recorded on the plots. Plant diversity increased in the course of forest regeneration from clearings and secondary forest to mature forest remnants and mature forest. This increase was visible in all vegetation strata as well as in the species number of Dicotyledoneae. The diversity of geometrid moths conversely decreased from early to late successional stages. A total of 2276 Geometridae representing 114 morphospecies were included in the study. Local values of Fisher's α varied from 10.3 to 18.3 on clearings and in secondary forest, whereas they remained below 8.0 in mature forest and mature forest remnants. There was a significant negative correlation between the diversity of Geometridae and the number of dicots, and of plant species in the shrub layer. Main conclusions Contrary to an expected positive correlation between the diversity of vascular plants and herbivorous geometrid moths, diversity patterns of these two groups are strongly diverging due to biogeographical and ecological factors differently affecting the two groups. The increase in plant diversity can chiefly be explained with an increase in epiphyte diversity which is related to the occurrence of suitable habitats in extensive moss layers on huge Ocotea usambarensis (Engl.) trees in the mature forest. The low diversity of geometrid moths in these forests may be connected to the isolation and relatively young age of the montane rain forests on Mt Kilimanjaro. Hence only a small number of moth species adapted to the cool and perhumid conditions within moist mature forest have so far immigrated into these habitats, and time was insufficient for the evolution of many new species.  相似文献   

2.
Alpha‐diversity of geometrid moths was investigated along an elevational gradient in a tropical montane rainforest in southern Ecuador. Diversity was measured using 1) species number, 2) extrapolated species number (Chao 1 estimator), 3) rarefied species number, and 4) Fisher's alpha. When applied to the empirical data set, 1 and 2 strongly depended on the sample size, whereas 3 and 4 were suitable and reliable measures of local diversity. At single sites, up to 292 species were observed, and extrapolation estimates range from 244 to 445 species. Values for Fisher's alpha are among the highest ever measured for this moth family, and range from 69 to 131 per site. In contrast to theoretical assumptions and empirical studies in other regions of the world, the diversity of geometrid moths remained consistently high along the entire gradient studied. Diversity measures correlated with neither altitude nor ambient temperature. The large subfamily Ennominae has previously been assumed to be a group that occurs mainly at low and medium elevations. However, no decline in diversity was found in the study area. The diversity of the other large subfamily, Larentiinae, even increased from the lowest elevations and was highest at elevations above 1800 m. The roles of a decreasing diversity of potential host‐plants, decreasing structural complexity of the vegetation, increasingly unfavourable climatic conditions and possible physiological adaptations in determining herbivore species richness are discussed. A relatively low predation pressure might be an advantage of high‐altitude habitats. The physiognomy of the Andes (folded mountains, large areas at high altitudes) might also have allowed speciation events and the development of a species‐rich high‐altitude fauna. There is evidence that the species‐richness of other groups of herbivorous insects in the same area declines as altitude increases. This emphasises difficulties that are associated with biodiversity indicator groups, and calls for caution when making generalisations from case studies.  相似文献   

3.
Aim We examined changes in the species diversity and faunal composition of arctiid moths along a successional gradient at a fine spatial scale in one of the world's hot spots for moths, the Andean montane rain forest zone. We specifically aimed to discover whether moth groups with divergent life histories respond differentially to forest recovery. Location Southern Ecuador (province Zamora‐Chinchipe) along a gradient from early successional stages to mature forest understorey at elevations of 1800–2005 m a.s.l. Methods Moths were sampled with weak light traps at 21 sites representing three habitat categories (early and late succession, mature forest understorey), and were analysed at species level. Relative proportions were calculated from species numbers as well as from specimen numbers. Fisher's α was used as a measure of local diversity, and for ordination analyses non‐metric multidimensional scaling (NMDS) was carried out. Results Proportions of higher arctiid taxa changed distinctly along the successional gradient. Ctenuchini (wasp moths) contributed more strongly to ensembles in natural forest, whereas Lithosiinae (lichen moths) decreased numerically with forest recovery. Arctiid species diversity (measured as Fisher's α) was high in all habitats sampled. The three larger subordinated taxa contributed differentially to richness: Phaegopterini (tiger moths) were always the most diverse clade, followed by Ctenuchini and Lithosiinae. Local species diversity was higher in successional habitats than in forest understorey, and this was most pronounced for the Phaegopterini. Dominance of a few common species was higher, and the proportion of species represented as singletons was lower, than reported for many other tropical arthropod communities. NMDS revealed a significant segregation between ensembles from successional sites and from forest understorey for all larger subordinated taxa (Phaegopterini, Ctenuchini, Lithosiinae). Abandoned pastures held an impoverished, distinct fauna. Faunal segregation was more pronounced for rare species. Ordination axes reflected primarily the degree of habitat disturbance (openness of vegetation, distance of sites from mature forest) and, to a lesser extent, altitude, but not distance between sampling sites. Main conclusions Despite the geographical proximity of the 21 sites and the pronounced dispersal abilities of adult arctiid moths, local ecological processes were strong enough to allow differentiation between ensembles from mature forest and disturbed sites, even at the level of subfamilies and tribes. Differences in morphology and life‐history characteristics of higher arctiid taxa were reflected in their differential representation (proportions of species and individuals) at the sites, whereas patterns of alpha and beta diversity were concordant. However, concordance was too low to allow for reliable extrapolation, in terms of biodiversity indication, from one tribe or subfamily to the entire family Arctiidae. Phaegopterini (comprising more putative generalist feeders during the larval stages) benefited from habitat disturbance, whereas Ctenuchini (with host‐specialist larvae) were more strongly affiliated with forest habitats.  相似文献   

4.
Andean montane rain forests are among the most species‐rich terrestrial habitats. Little is known about their insect communities and how these respond to anthropogenic habitat alteration. We investigated exceptionally speciose ensembles of nocturnal tiger moths (Arctiidae) at 15 anthropogenically disturbed sites, which together depict a gradient of forest recovery and six closed‐forest understorey sites in southern Ecuador. At weak light traps we sampled 9211 arctiids, representing 287 species. Arctiid abundance and diversity were highest at advanced succession sites, where secondary scrub or young forest had re‐established, followed by early succession sites, and were lowest, but still high, in mature forest understorey. The proportion of rare species showed the reverse pattern. We ordinated moth samples by non‐metric multidimensional scaling using the chord‐normalized expected species shared index (CNESS) index at various levels of the sample size parameter m. A distinct segregation of arctiid ensembles at succession sites from those in mature forest consistently emerged only at high m‐values. Segregation between ensembles of early vs. late succession stages was also clear at high m values only, and was rather weak. Rare species were responsible for much of the faunal difference along the succession gradient, whereas many common arctiid species occurred in all sites. Matrix correlation tests as well as exploration of relationships between ordination axes and environmental variables revealed the degree of habitat openness, and to a lesser extent, elevation, as best predictors of faunal dissimilarity. Faunal differences were not related to geographical distances between sampling sites. Our results suggest that many of the more common tiger moths of Neotropical montane forests have a substantial recolonization potential at the small spatial scale of our study and accordingly occur also in landscape mosaics surrounding nature reserves. These species contribute to the unexpectedly high diversity of arctiid ensembles at disturbed sites, whereas the proportion of rare species declines outside mature forest.  相似文献   

5.
Aim The objective of this study was to describe and interpret the changes in faunal composition in the moth family Geometridae (Lepidoptera) along a small‐scale elevational gradient in a tropical montane rain forest. This gradient was compared with a large‐scale latitudinal gradient in Europe. Location Investigations were carried out in the province Zamora‐Chinchipe in southern Ecuador along a gradient ranging from 1040 to 2677 m above sea level at twenty‐two sites. Methods Moths were sampled with light‐traps in three field periods in 1999 and 2000 and subsequently sorted and determined to species or morphospecies. Results We analysed 13,938 specimens representing 1010 species of geometrid moths. The proportional contribution of subtaxa to the local geometrid fauna changes along the elevational gradient at all systematic levels considered. While proportions of species of the subfamilies Ennominae, Sterrhinae and Geometrinae significantly decrease, the proportion of Larentiinae increases with increasing altitude. Changes also occur within the subfamilies Ennominae and Larentiinae. The host–plant specialist ennomine tribes Cassymini, Macariini and Palyadini completely vanish, and the proportion of the tribe Boarmiini decreases at high altitudes. In contrast, the remaining tribes (mostly comprising polyphagous species) either do not show proportional changes (Azelinini, Nacophorini, Nephodiini, Ourapterygini) or even increase (Caberini, ‘Cratoptera group’). Within Larentiinae, the species proportion of the genus Eois decreases, whereas concomitantly the proportion of Eupithecia increases. There is a remarkable similarity between the altitudinal patterns in Ecuador and those found along the latitudinal gradient in Europe. Main conclusions Species of the subfamily Larentiinae seem to be particularly well‐adapted to harsh environmental conditions, towards both high altitudes and latitudes. They might disproportionately profit from lower predation at higher altitudes. Many changes in the faunal composition can be explained by expected host–plant requirements of the species involved. Our results show that diversity estimates based on taxon ratios which are assumed to be constant must be regarded with caution because such ratios can change rapidly along environmental gradients.  相似文献   

6.
Abstract. Turnover in species composition of the extremely species‐rich family Geometridae (Lepidoptera) was investigated along an elevational gradient ranging from 1040 m to 2677 m above sea level. Moths were sampled using weak light traps (30 W) in three field periods in 1999 and 2000 in an Andean montane rainforest in the province of Zamora‐Chinchipe in southern Ecuador. A total of 13 938 specimens representing 1010 species were analysed. Similarities of ensembles of all geometrid moths and of the subfamilies Ennominae and Larentiinae were calculated using the NESS index (with mmax). Ordinations performed using nonmetric multidimensional scaling (NMDS) and correspondence analysis depicted a gradual change of the ensembles along the altitudinal gradient. Extracted ordination scores significantly correlate with altitude (?0.97 ≤ r ≤ ?0.95, P < 0.001) and with ambient air temperature (0.93 ≤ r ≤ 0.97, P < 0.001). Temperature is therefore assumed to be the most important abiotic determinant responsible for the species turnover among the moths. Matrix correlation tests were performed in order to compare faunal matrices with matrices derived from available environmental factors. Both tree diversity and vegetation structure significantly correlate with faunal data, but tree diversity explains considerably more of the data variability (range: Mantel r = 0.81–0.83, P < 0.001) than vegetation structure (range: Mantel r = 0.35, P < 0.005 to r = 0.43, P < 0.001). Tree diversity also changes gradually and scores of the first NMDS dimension are highly significantly correlated with altitude (r = 0.98, P < 0.001). A common underlying factor such as ambient temperature might also be responsible for such vegetation changes. Additionally, simulated model data was developed that assumed a constant turnover of moth species and equal elevational ranges of all species involved. Despite the simplicity of the models, they fit empirical data very well (Mantel r > 0.80 and P < 0.001 in all models).  相似文献   

7.
Aim This study was conducted to investigate the potential of predicting alpha diversity and turnover rates of a highly diverse herbivorous insect family (Geometridae) based on vascular plant species richness and vegetation structure. Location The study was carried out on the south‐western slopes of Mount Kilimanjaro within a wide range of habitats between 1200 and 3150 m elevation. Methods The floristic and structural composition of the vegetation was recorded at 48 plots of 400 m2. Geometrid moths were sampled manually at light sources located at the plot centres. Principal components analysis, redundancy analysis and multiple linear regression were used to explore how alpha diversity and species turnover of geometrid moths are related to vegetation structure and plant species richness. Results Alpha diversity of geometrid moths was significantly correlated with species diversity patterns in the most common vascular plant families (R2 = 0.49) and with plant structural parameters (R2 = 0.22), but not with overall floristic diversity. Species turnover of geometrid moths was strongly linked to diversity changes in a range of plant families (40% explained variance), less strongly to changes in vegetation physiognomy (25%), and only weakly to overall floristic diversity (5%). Changes in elevation were a better predictor of both alpha diversity and species turnover of geometrid moths than any principal component extracted from the vegetation data. Main conclusions Vegetation composition, diversity and structure all showed significant correlations with the diversity and species composition of geometrid moth assemblages. Nevertheless, in most cases relationships were indirect, via environmental parameters such as temperature and humidity, which influenced both vegetation and moth fauna. Possible direct links between geometrid diversity and potential food plants were much weaker. The lack of a significant correlation between overall plant species richness and geometrid diversity indicates that tropical geometrid moths may not be very selective in their food plant choice. Accordingly, a clear correlation between floral diversity and herbivore species richness must be regarded as overly simplistic, and the diversity of vascular plants cannot universally be used as a suitable biodiversity indicator for diverse insect taxa at higher trophic levels.  相似文献   

8.
滇南勐宋热带山地雨林的物种多样性与生态学特征   总被引:21,自引:0,他引:21       下载免费PDF全文
 研究了鲜为人知的滇南勐宋地区的原始山地雨林植被, 根据分布生境、群落结构和种类组成特征,可将该山地雨林区分为沟谷和山坡两个类型, 分别定义为八蕊单室茱萸(Mastixia euonymoides)-大萼楠(Phoebe megacalyx)林和云南拟单性木兰(Parachmeria yunnanensis)-云南裸花(Gymnanthes remota)林。该山地雨林的外貌仍以单叶、革质、全缘、中叶为主的常绿中、小高位芽植物组成为特征,层间木质藤本植物仍较丰富,草本高位芽植物和附生植物丰富,但板根和茎花现象少见,属于热带山地垂直带上低山雨林或山地雨林植被类型。与该地区的典型热带季节雨林和赤道热带雨林相比, 勐宋的山地雨林群落中的大、中高位芽植物和藤本高位芽植物比例相对减少, 小、矮高位芽植物和草本高位芽植物比例相对增加,单叶、革质、非全缘叶和小叶比例相对增加,板根现象少见。与中国热带北缘-南亚热带地区(季风)常绿阔叶林比较, 勐宋的山地雨林有较多的附生植物和草本高位芽植物,相对较少的小高位芽植物和矮高位芽植物,小叶比例亦较少,非全缘叶和革质叶比例相对较低。故勐宋山地雨林是滇南热带北缘山地的一种较湿润生境的植被类型, 与所谓的季风常绿阔叶林不同。在物种多样性上,勐宋热带山地雨林在单位面积植物种数上并不比该地区的热带季节雨林低, 物种多样性指数与低丘季节雨林相当,比沟谷季节雨林低, 明显高于季风常绿阔叶林。  相似文献   

9.
Aim The biodiversity of geometrid moths (Lepidoptera) along a complete tropical elevational gradient was studied for the first time. The patterns are described, and the role of geometric constraints and environmental factors is explored. Location The study was carried out along the Barva Transect (10° N, 84° W), a complete elevational gradient ranging from 40 to 2730 m a.s.l. in Braulio Carrillo National Park, Costa Rica, and adjacent areas. Methods Moths were sampled manually in 2003 and 2004 at 12 rain forest sites using light ‘towers’, each with two 15 W ultraviolet fluorescent tubes. We used abundance‐based rarefaction, statistical estimation of true richness (Chao 1), geographically interpolated observed richness and Fisher's alpha as measures of local diversity. Results A total of 13,765 specimens representing 739 species were analysed. All four measures showed a hump‐shaped pattern with maxima between 500 and 2100 m elevation. The two subfamilies showed richness and diversity maxima at either lower (Ennominae) or higher (Larentiinae) elevation than Geometridae as a whole. Among the four environmental factors tested, relative humidity yielded the highest correlation over the transect with the rarefaction‐based richness estimates as well as with estimated true species richness of Geometridae as a whole and of Larentiinae, while rainfall explained the greatest variation of Ennominae richness. The elevational pattern of moth richness was discordant with both temperature and with tree species richness. A combination of all environmental factors in a stepwise multiple regression produced high values of r2 in Geometridae. The potential effects of geometric constraints (mid‐domain effect, MDE) were investigated by comparing them with observed, interpolated richness. Overall, models fitted very well for Geometridae as a whole and for Ennominae, but less well for Larentiinae. Small‐ranged species showed stronger deviations from model predictions than large‐ranged species, and differed strikingly between the two subfamilies, suggesting that environmental factors play a more pronounced role for small‐ranged species. We hypothesize that small‐ranged species (at least of the Ennominae) may tend to be host specialists, whereas large‐ranged species tend to be polyphagous. Based on interpolated ranges, mean elevational range for these moths was larger with increasing elevation, in accordance with Rapoport's elevational rule, although sampling effects may have exaggerated this pattern. The underlying mechanism remains unknown because Rapoport's ‘rescue’ hypothesis could not explain the observed pattern. Conclusions The results clearly show that moth diversity shows a hump‐shaped pattern. However, remarkable variation exists with regard to taxon and range size. Both environmental and geometric factors are likely to contribute to the observed patterns.  相似文献   

10.
Abstract The genus Eois comprises an important part of megadiverse assemblages of geometrid moths in mountain rainforests of southern Ecuador. In this study we report: (i) on the construction of a DNA barcode library of Eois for identification purposes; and (ii) the exploration of species diversity through species delimitation by pair‐wise distance thresholds. COI barcode sequences were generated from 408 individuals (at least 105 species) collected on a narrow geographic scale (~40 km2) in the Reserva Biológica San Francisco. Analyses of barcode sequence divergence showed that species delimitations based solely on external morphology result in broad overlap of intra‐ and interspecific distances. Species delimitation at a 2% pair‐wise distance threshold reveals a clear barcoding gap. Fifty‐two previously unrecognized species were identified, 31 of which could only be distinguished by an integrative taxonomy approach. Twelve additional putative species could only be recognized by threshold‐based delimitation. Most splits resulted in two or three newly perceived cryptic taxa. The present study increased the number of Eois species recorded from that small area of Andean mountain forest from 102 to 154 (morphology‐ plus integrative taxonomy‐based) or even 166 (sequence‐based), leaving the species accumulation curve still far from reaching an asymptote. Notably, in no case did two or more previously distinguished morphospecies have to be lumped. This barcode inventory can be used to match larvae to known adult samples without rearing, and will therefore be of vital help to extend the currently limited knowledge about food plant relationships and host specialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号