首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases   总被引:1,自引:0,他引:1  
Acyl-CoA thioesterases, also known as acyl-CoA hydrolases, are a group of enzymes that hydrolyze CoA esters such as acyl-CoAs (saturated, unsaturated, branched-chain), bile acid-CoAs, CoA esters of prostaglandins, etc., to the corresponding free acid and CoA. However, there is significant confusion regarding the nomenclature of these genes. In agreement with the HUGO Gene Nomenclature Committee and the Mouse Genomic Nomenclature Committee, a revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases has been suggested for the 12 member family. The family root symbol is ACOT, with human genes named ACOT1-ACOT12, and rat and mouse genes named Acot1-Acot12. Several of the ACOT genes are the result of splicing events, and these splice variants are cataloged.  相似文献   

2.
A Nomenclature committee for Factors of the Dog Major Histocompatibility System or Dog Leukocyte Antigen (DLA) has been convened under the auspices of the International Society for Animal Genetics (ISAG) to define a sequence based nomenclature for the genes of the DLA system. The remit of this committee includes: assignment of gene names rules for naming alleles assignment of names to published alleles assignment of names to new alleles rules for acceptance of new alleles DLA Nomenclature Committee, rules for acceptance, DLA genes and alleles, sequence based nomenclature.  相似文献   

3.
Cao L  Ding X  Yu W  Yang X  Shen S  Yu L 《FEBS letters》2007,581(28):5526-5532
Septins, a conserved family of cytoskeletal GTP-binding proteins, were presented in diverse eukaryotes. Here, a comprehensive phylogenetic and evolutionary analysis for septin proteins in metazoan was carried out. First, we demonstrated that all septin proteins in metazoan could be clustered into four subgroups, and the representative homologue of every subgroup was presented in the non-vertebrate chordate Ciona intestinalis, indicating that the emergence of the four septin subgroups should have occurred prior to divergence of vertebrates and invertebrates, and the expansion of the septin gene number in vertebrates was mainly by the duplication of pre-existing genes rather than by the appearance of new septin subgroup. Second, the direct orthologues of most human septins existed in zebrafish, which suggested that human septin gene repertoire was mainly formed by as far as before the split between fishes and land vertebrates. Third, we found that the evolutionary rate within septin family in mammalian lineage varies significantly, human SEPT1, SEPT 10, SEPT 12, and SEPT 14 displayed a relative elevated evolutionary rate compared with other septin members. Our data will provide new insights for the further function study of this protein family.  相似文献   

4.
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.  相似文献   

5.
6.
Comparative genomics is an essential component of the post-genomic era. The chicken genome is the first avian genome to be sequenced and it will serve as a model for other avian species. Moreover, due to its unique evolutionary niche, the chicken genome can be used to understand evolution of functional elements and gene regulation in mammalian species. However comparative biology both within avian species and within amniotes is hampered due to the difficulty of recognising functional orthologs. This problem is compounded as different databases and sequence repositories proliferate and the names they assign to functional elements proliferate along with them. Currently, genes can be published under more than one name and one name sometimes refers to unrelated genes. Standardized gene nomenclature is necessary to facilitate communication between scientists and genomic resources. Moreover, it is important that this nomenclature be based on existing nomenclature efforts where possible to truly facilitate studies between different species. We report here the formation of the Chicken Gene Nomenclature Committee (CGNC), an international and centralized effort to provide standardized nomenclature for chicken genes. The CGNC works in conjunction with public resources such as NCBI and Ensembl and in consultation with existing nomenclature committees for human and mouse. The CGNC will develop standardized nomenclature in consultation with the research community and relies on the support of the research community to ensure that the nomenclature facilitates comparative and genomic studies.  相似文献   

7.
1. New information identifying nucleotide alterations of human butyrylcholinesterase allows the use of more specific nomenclature for the variants commonly known as atypical, fluoride, silent, and K variant. 2. In addition to suggesting a system of trivial names and abbreviations, we provide a list of formal names that follow the guidelines of the Committee for Human Gene Nomenclature. 3. It is suggested that formal names be included in publications whenever possible.  相似文献   

8.
The BoLA (bovine lymphocyte antigen) Nomenclature Committee met during the 1994 and 1996 conferences of the International Society for Animal Genetics to define a sequence-based nomenclature system for genes of the BoLA system. The rules for acceptance of new sequences are described and names are assigned to the sequenced alleles of the class II genes DRA, DRB1, DRB2, DRB3, DQA, DQB, DYA, DIB, DMA and DMB . The assignment of BoLA class I sequences to loci will be considered at a later workshop when further sequencing/mapping data are available.  相似文献   

9.
Septins are conserved GTP-binding proteins that assemble into lateral diffusion barriers and molecular scaffolds. Vertebrate genomes contain 9-17 septin genes that encode both ubiquitous and tissue-specific septins. Expressed septins may assemble in various combinations through both heterotypic and homotypic G-domain interactions. However, little is known regarding assembly states of mammalian septins and mechanisms directing ordered assembly of individual septins into heteromeric units, which is the focus of this study. Our analysis of the septin system in cells lacking or overexpressing selected septins reveals interdependencies coinciding with previously described homology subgroups. Hydrodynamic and single-particle data show that individual septins exist solely in the context of stable six- to eight-subunit core heteromers, all of which contain SEPT2 and SEPT6 subgroup members and SEPT7, while heteromers comprising more than six subunits also contain SEPT9. The combined data suggest a generic model for how the temporal order of septin assembly is homology subgroup-directed, which in turn determines the subunit arrangement of native heteromers. Because mammalian cells normally express multiple members and/or isoforms of some septin subgroups, our data also suggest that only a minor fraction of native heteromers are arranged as perfect palindromes.  相似文献   

10.
Mice provide an unlimited source of animal models to study mammalian gene function and human diseases. The powerful genetic modification toolbox existing for the mouse genome enables the creation of, literally, thousands of genetically modified mouse strains, carrying spontaneous or induced mutations, transgenes or knock-out/knock-in alleles which, in addition, can exist in hundreds of different genetic backgrounds. Such an immense diversity of individuals needs to be adequately annotated, to ensure that the most relevant information is kept associated with the name of each mouse line, and hence, the scientific community can correctly interpret and benefit from the reported animal model. Therefore, rules and guidelines for correctly naming genes, alleles and mouse strains are required. The Mouse Genome Informatics Database is the authoritative source of official names for mouse genes, alleles, and strains. Nomenclature follows the rules and guidelines established by the International Committee on Standardized Genetic Nomenclature for Mice. Herewith, both from the International Society for Transgenic Technologies (ISTT) and from the scientific journal Transgenic Research, we would like to encourage all our colleagues to adhere and follow adequately the standard nomenclature rules when describing mouse models. The entire scientific community using genetically modified mice in experiments will benefit.  相似文献   

11.
Septins are filamentous guanosine triphosphatase-binding proteins that are required for cytokinesis in a wide range of organisms from yeast to man. Several septins, including SEPT9, have been found to be altered in cancers, but their roles in malignancy and cytokinesis remain unclear. It is known that they assemble into rod-shaped oligomeric complexes that join end-on-end to form filaments, but whether SEPT9 incorporates into these complexes and how it does so are unanswered questions. We used tandem affinity purification of mammalian septin complexes to show that SEPT9 occupies a terminal position in an octameric septin complex. A mutant SEPT9, which cannot self-associate, disrupted septin filament formation and resulted in late abscission defects during cytokinesis but did not affect septin-dependent steps earlier in mitosis. These data suggest that mammalian SEPT9 holds a terminal position in the septin octamers, mediating abscission-specific polymerization during cytokinesis.  相似文献   

12.
Nomenclature of the ARID family of DNA-binding proteins   总被引:4,自引:0,他引:4  
The ARID is an ancient DNA-binding domain that is conserved throughout the evolution of higher eukaryotes. The ARID consensus sequence spans about 100 amino acid residues, and structural studies identify the major groove contact site as a modified helix-turn-helix motif. ARID-containing proteins exhibit a range of cellular functions, including participation in chromatin remodeling, and regulation of gene expression during cell growth, differentiation, and development. A subset of ARID family proteins binds DNA specifically at AT-rich sites; the remainder bind DNA nonspecifically. Orthologs to each of the seven distinct subfamilies of mammalian ARID-containing proteins are found in insect genomes, indicating the minimum age for the organization of these higher metazoan subfamilies. Many of these ancestral genes were duplicated and fixed over time to yield the 15 ARID-containing genes that are found in the human, mouse, and dog genomes. This paper describes a nomenclature, recommended by the Mouse Genomic Nomenclature Committee (MGNC) and accepted by the Human Genome Organization (HUGO) Gene Nomenclature Committee, for these mammalian ARID-containing genes that reflects this evolutionary history.  相似文献   

13.

Background

Septins are conserved GTPases that form filaments and are required in many organisms for several processes including cytokinesis. We previously identified SEPT9 associated with phagosomes containing latex beads coated with the Listeria surface protein InlB.

Methodology/Principal Findings

Here, we investigated septin function during entry of invasive bacteria in non-phagocytic mammalian cells. We found that SEPT9, and its interacting partners SEPT2 and SEPT11, are recruited as collars next to actin at the site of entry of Listeria and Shigella. SEPT2-depletion by siRNA decreased bacterial invasion, suggesting that septins have roles during particle entry. Incubating cells with InlB-coated beads confirmed an essential role for SEPT2. Moreover, SEPT2-depletion impaired InlB-mediated stimulation of Met-dependent signaling as shown by FRET.

Conclusions/Significance

Together these findings highlight novel roles for SEPT2, and distinguish the roles of septin and actin in bacterial entry.  相似文献   

14.
The septin is a conserved GTP binding protein family which is involved in multiple cellular processes. Many evidences have indicated that some septins were abnormally expressed in certain kinds of tumors and the altered expressions were related to the process of carcinogenesis. To better understand the relationship between septins and cancer, we compared the expression of 14 human septin family members in 35 kinds of tumor types with their normal counterparts using the publicly available ONCOMINE microarray database. We found altered expression of most septin members in many kinds of tumors. Significantly, SEPT2, SEPT8, SEPT9, SEPT11 were consistently up-regulated, and SEPT4, SEPT10 were down-regulated in most cancer types investigated. Furthermore, the abnormal expressions were also in accordance with the tumor malignances or prognosis of corresponding cancer patients. These findings have contributed to the view that septins may belong to a kind of cancer critical genes. More septins might act as potential oncogenes or tumor suppressor genes in cancer development.  相似文献   

15.
The HUGO Gene Nomenclature Committee (HGNC) is the only organisation authorised to assign standardised nomenclature to human genes. Of the 38,000 approved gene symbols in our database (http://www.genenames.org), the majority represent protein-coding (pc) genes; however, we also name pseudogenes, phenotypic loci, some genomic features, and to date have named more than 8,500 human non-protein coding RNA (ncRNA) genes and ncRNA pseudogenes. We have already established unique names for most of the small ncRNA genes by working with experts for each class. Small ncRNAs can be defined into their respective classes by their shared homology and common function. In contrast, long non-coding RNA (lncRNA) genes represent a disparate set of loci related only by their size, more than 200 bases in length, share no conserved sequence homology, and have variable functions. As with pc genes, wherever possible, lncRNAs are named based on the known function of their product; a short guide is presented herein to help authors when developing novel gene symbols for lncRNAs with characterised function. Researchers must contact the HGNC with their suggestions prior to publication, to check whether the proposed gene symbol can be approved. Although thousands of lncRNAs have been predicted in the human genome, for the vast majority their function remains unresolved. lncRNA genes with no known function are named based on their genomic context. Working with lncRNA researchers, the HGNC aims to provide unique and, wherever possible, meaningful gene symbols to all lncRNA genes.  相似文献   

16.
The PAT family of proteins has been identified in eukaryotic species as diverse as vertebrates, insects, and amebazoa. These proteins share a highly conserved sequence organization and avidity for the surfaces of intracellular, neutral lipid storage droplets. The current nomenclature of the various members lacks consistency and precision, deriving more from historic context than from recognition of evolutionary relationship and shared function. In consultation with the Mouse Genomic Nomenclature Committee, the Human Genome Organization Genomic Nomenclature Committee, and conferees at the 2007 FASEB Conference on Lipid Droplets: Metabolic Consequences of the Storage of Neutral Lipids, we have established a unifying nomenclature for the gene and protein family members. Each gene member will incorporate the root term PERILIPIN (PLIN), the founding gene of the PAT family, with the different genes/proteins numbered sequentially.  相似文献   

17.
18.
Interest in the biology of mammalian septin proteins has undergone a birth in recent years. Originally identified as critical for yeast budding throughout the 1970s, the septin family is now recognized to extend from yeast to humans and is associated with a variety of events ranging from cytokinesis to vesicle trafficking. An emerging theme for septins is their presence at sites where active membrane or cytoplasmic partitioning is occurring. Here, we briefly review the mammalian septin protein family and focus on a prototypic human and mouse septin, termed SEPT5, that is expressed in the brain, heart, and megakaryocytes. Work from neurobiology laboratories has linked SEPT5 to the exocytic complex of neurons, with implications that SEPT5 regulates neurotransmitter release. Striking similarities exist between neurotransmitter release and the platelet-release reaction, which is a critical step in platelet response to vascular injury. Work from our laboratory has characterized the platelet phenotype from mice containing a targeted deletion of SEPT5. Most strikingly, platelets from SEPT5(null) animals aggregate and release granular contents in response to subthreshold levels of agonists. Thus, the characterization of a SEPT5-deficient mouse has linked SEPT5 to the platelet exocytic process and, as such, illustrates it as an important protein for regulating platelet function. Recent data suggest that platelets contain a wide repertoire of different septin proteins and assemble to form macromolecular septin complexes. The mouse platelet provides an experimental framework to define septin function in hemostasis, with implications for neurobiology and beyond.  相似文献   

19.
We propose a nomenclature for the genes encoding the chlorophylla/b-binding proteins of the light-harvesting complexes of photosystem I and II. The genes encoding LHC I and LHC II polypeptides are namedLhca1 throughLhca4 andLhcb1 throughLhcb6, respectively. The proposal follows the general format recommended by the Commision on Plant Gene Nomenclature. We also present a table for the conversion of old gene names to the new nomenclature.  相似文献   

20.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence data base and have been assigned the accesion number M74842. The name DQB1*0304 has been officially assigned by the WHO Nomenclature Committee in November 1991. This follows the agreed policy that, subject to the conditions stated in the most recent Nomenclature Report (WHO Nomenclature Committee for factors of the HLA system, 1991), names will be assigned to new sequences as they are identified. List of such new names will be published in the following WHO Nomenclature Report.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号