首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
利用2套具有共同亲本黄早四且分别含有230个及235个家系的F2:3群体,结合2年多点的表型鉴定,运用完备复合区间作图方法对不同生态环境下(2007-北京、2008-北京、2007-河南、2008-河南、2007-新疆以及2008-新疆)的玉米雄穗分枝数和雄穗重进行QTL定位。同时,利用基于混合线性模型的QTLNetwork-2.0软件进行基因×环境互作及上位性分析。6个环境下2个群体共检测到51个与雄穗分枝数和雄穗重相关的QTL(Q/H群体32个,Y/H群体19个),其中包括7个主效QTL,并在Q/H群体中确定了2个重要的QTL,即位于7.01bin的Qqtpbn7-1和位于7.02bin的Qqtw7-2。对比2个群体的定位结果,共挖掘到3个在不同遗传背景下的"一致性"QTL,这些在不同环境及不同遗传背景下能够稳定存在的QTL可为玉米雄穗相关性状的生产应用以及精细定位提供有价值的参考。  相似文献   

2.
玉米雄穗分枝数与主轴长的QTL鉴定   总被引:8,自引:0,他引:8  
高世斌  赵茂俊  兰海  张志明 《遗传》2007,29(8):1013-1013―1017
在包含103个SSR标记的连锁图谱基础上, 运用复合区间作图法检测玉米组合(N87-1×9526 )F3家系在正常与干旱胁迫环境下的雄穗分枝数与主轴长性状QTL。雄穗分枝数在正常环境下被检测到2个QTL座位, 分别位于第5和7连锁群上; 在胁迫环境下被检测到4个QTL座位分别位于 2、5、7和10连锁群上, 其中位于第5和7连锁群上的QTL不仅具有一致性而且与本作图群体中曾检测到的耐旱相关性状QTL存在连锁。雄穗主轴长在正常环境下被检测到2个QTL位于第2和第6连锁群上, 在干旱胁迫环境下被检测到了3个QTL分别于第2、4和10连锁群上, 其中位于第2染色体上的QTL是两种环境下所共同检测到的QTL。分析QTL的遗传作用方式表明, 雄穗分枝数以部分加性效应为主, 而雄主轴长全部表现为显性和超显性。  相似文献   

3.
玉米为雌雄同株异花植物,其雄穗着生于植株顶部,雌穗腋生。雄穗一方面需产生足量花粉以保证雌穗授粉结实,另一方面由于对下部叶片的遮蔽作用和自身营养需求,其生长发育会同时影响叶片光合作用效率和能量分配,因此优化雄穗结构是提高玉米产量的重要措施之一。玉米雄穗性状包括雄穗分枝数、雄穗分枝长度、雄穗主轴长度、雄穗分枝总长度、雄穗分枝角度等,均为多基因控制的数量性状。自20世纪90年代,研究者开始利用数量性状位点(quantitative trait locus,QTL)定位方法解析玉米雄穗性状遗传结构;随着玉米自交系B73等参考基因组释放,以及DNA微阵列、基因组重测序等高通量基因分型技术的日益成熟,全基因组关联分析(genome-wide association study, GWAS)成为数量性状遗传研究的主流方法,目前已鉴定出大量玉米雄穗性状遗传位点。通过总结雄穗性状遗传定位研究结果,构建一致性图谱并挖掘定位热点区间,有助于进一步了解雄穗性状遗传结构特征及指导雄穗性状候选基因克隆。此外,通过对调控雄穗发育的已知基因进行功能分类,可为解析玉米雄穗发育的遗传网络和调控通路提供理论支撑。  相似文献   

4.
玉米雄穗颜色QTL分析   总被引:2,自引:0,他引:2  
雄穗是玉米的重要生殖器官,不同品种间玉米的雄穗外观差异明显。对玉米雄穗的颜色进行遗传分析和QTL定位,筛选与雄穗颜色紧密连锁的分子标记,可以作为玉米的品种保护和品种鉴别的有用工具。同时,紫色雄穗中花色苷类色素含量较高,与玉米雄穗的抗虫性密切相关。本研究利用一个黑玉米自交系SDM为共同父本,分别与白玉米自交系木6和黄玉米自交系Mo17杂交,构建2个相关F2∶3群体,分别命名为MuS(木6×SDM)和MoS(Mo17×SDM),在云南和重庆两个不同的环境中种植,对玉米花药颜色(COAn)和花药护颖颜色(COCa)2个性状进行QTL定位。结果表明:玉米花药和花药护颖的颜色均为数量性状,受主效基因和微效基因共同控制。2个群体在2个环境中共检测到7个与花药颜色相关的QTL,位于第2、3、6和10染色体上,其中位于第10染色体标记区间umc1196a-IDP8526内的QTL在重庆和云南同时表达,对表型的贡献率分别为23.17%和19.98%;2个群体在2个环境中共检测到9个与花药护颖颜色相关的QTL,位于第3、6、9和10染色体上,其中3个QTL为环境钝感QTL(在2个环境中均表达,且至少在1个环境中贡献率大于10%),分别位于第6染色体标记区间umc1979-umc1796、mmc0523-umc2006内和第10染色体标记区间umc1196a-umc2043内,对表型的贡献率为10.69%~59.30%。2个群体检测到的主效QTL的位置和效应高度一致,且控制花药颜色和花药护颖颜色2个性状的主效QTL有连锁分布的现象,主要表现在bins 6.04处的标记mmc0523和bins 10.04处的标记IDP8526附近。位于第6和第10染色体上的在不同环境和遗传背景下稳定的QTL可以作为进一步精细定位的靶位点,也可以为玉米雄穗颜色的分子标记辅助选择提供有价值的参考。  相似文献   

5.
两个相关基因表达量和SNP与玉米雄穗大小相关   总被引:1,自引:0,他引:1  
玉米雄穗通常较发达,散粉量大于授粉需要,过量消耗能量会影响光合产物向果穗的分配,过于发达的雄穗还会影响群体透光性、降低光合效率。生产实践和育种研究证明,由于雄穗大小与玉米籽粒产量负相关,因此成为品种选育的间接选择指标。该研究根据前人的报道,从11个雄穗大小不同的玉米自交系中扩增角蛋白相关蛋白基因KAP5-4和受体样蛋白激酶基因CLV1的基因组序列,多重比较后用以分析其开放阅读框、保守结构和单核苷酸多态性,用荧光实时定量PCR检测其在雄穗原基中的差异表达,并与雄穗分枝数和雄穗干重两个度量雄穗小的指标进行了相关分析。结果表明:KAP5-4基因的相对表达量与雄穗分枝数(r=0.77,P0.01)和雄穗干重正相关(r=0.83,P0.01)。11个自交系的CLV1基因开放框在2 104 bp存在单核苷酸多态性,其中5个自交系的2 014~2 016 bp核苷酸组成密码子GAC,编码受体样蛋白第702位酸性的天冬氨酸,另6个自交系的2 014~2 016 bp核苷酸组成密码子AAC,编码受体样蛋白第702位极性天冬氨酰胺。在前5个自交系中,CLV1基因的相对表达量与雄穗分枝数(r=-0.92,P0.01)和雄穗干重(r=-0.91,P0.05)负相关;而在后6个自交系中,仅与雄穗干重负相关(r=-0.91,P0.05)。综上所述,KAP5-4和CLV1基因的表达和单核苷酸多态性与玉米雄穗大小关系密切,可开发功能性的DNA标记用于玉米育种的分子标记辅助选择。  相似文献   

6.
玉米株高和穗位高遗传基础的QTL剖析   总被引:13,自引:0,他引:13  
兰进好  褚栋 《遗传》2005,27(6):925-934
利用玉米强优势组合(Mo17×黄早四)自交衍生的191个F2单株构建了由SSR和AFLP标记组成的分子连锁图谱.F2进一步自交产生的184个F2:3家系用于调查株高和穗位高的表型值.采用基于混合线性模型的复合区间作图法和相应的作图软件QTLmapper/V2.0,分别定位了7个株高和6个穗位高QTL;检测到18对控制株高和13对控制穗位高的上位性效应位点;同时发现了与环境存在显著互作的6个株高和8个穗位高单位点标记区域以及4对株高和4对穗位高上位性效应区域.分析了各种遗传因素在株高和穗位高遗传基础中的相对作用大小,指出了加性、显性和上位性是玉米株高和穗位高的重要遗传基础.并对所定位的QTL的真实性、株高和穗位高的关系以及研究结果对分子育种的启示予以讨论.  相似文献   

7.
株高和穗位高是玉米重要育种性状,直接影响植株的养分利用效率及抗倒伏性,进而影响玉米产量。玉米株高和穗位高属于典型数量性状,目前通过数量性状位点(quantitative trait loci mapping,QTL)定位和全基因组关联分析(genome-wide association study, GWAS)等方法已挖掘到较多相关遗传位点,通过QTL精细定位及利用突变体克隆了一些调控株高和穗位高关键基因。但是由于各研究组所利用的群体类型和大小、标记类型和密度以及统计方法不同,所鉴定QTL差异较大,单个研究难以揭示玉米株高和穗位高遗传结构。早期QTL定位的结果多以遗传距离来展示,不同时期GWAS研究所使用参考基因组版本不同,这进一步增加了借鉴和利用前人研究结果的难度。首次将目前已鉴定株高和穗位高遗传定位信息统一锚定至玉米自交系B73参考基因组V4版本,构建了株高和穗位高性状定位的一致性图谱,并鉴定出可被多个独立研究定位的热点区间。进一步对已克隆玉米株高和穗位高调控基因进行总结与分类,揭示株高和穗位高性状调控机制,对深度解析株高和穗位高遗传结构、指导基因克隆和利用分子标记辅助选择优化玉米株高和穗位高性状均具有重要意义。  相似文献   

8.
云南元江普通野生稻穗颈维管束和穗部性状的QTL分析   总被引:9,自引:0,他引:9  
以云南元江普通野生稻为供体亲本,籼稻品种特青为轮回亲本构建高代回交群体,用SSR标记构建连锁图谱,在第1、2、3、4、7和10染色体上定位到7个控制穗颈大维管束数的QTL,在第1、2、3、4和8染色体上定位到5个控制穗颈小维管束数的QTL,在第11和12以外的10条染色体上,共定位到15个控制穗一、二次枝梗数和穗颖花数QTL。来自野生稻的等位基因大多表现负效,能显著减少群体的穗颈维管束数、枝梗数和颖花数,说明从野生稻演化成栽培稻的过程中,可能淘汰了一些对产量不利的QTL,保留了有利的QTL。相当一部分控制穗颈维管束数、枝梗数及颖花数的QTL在染色体上成簇分布或紧密连锁,且加性效应的方向一致,从理论上解释了这些性状表型显著相关的遗传基础,同时也说明在人工选择或自然选择下,这些性状可能存在平行进化或协同进化的关系。  相似文献   

9.
以十和田/昆明小白谷225个F14家系为作图群体,在云南省弥勒县(正常生长环境)、嵩明县(自然低温胁迫环境)、丽江市(自然低温胁迫环境)等3个试点不同年份共5种不同生长环境下进行了水稻主穗和分蘖穗穗伸出度的异地鉴定,并利用SSR标记对水稻穗伸出度进行了QTL分析。检测结果表明,在5种不同的生长环境下共检测到12个与水稻穗伸出度相关的QTL,分别分布于第1(2个QTLs)、2、4、6(3个QTLs)、7(3个QTLs)、9(2个QTLs)号染色体,对表型的贡献率为3.72%~22.17%。其中与主穗穗伸出度相关的QTL共11个,与分蘖穗穗伸出度相关的QTL共7个,其中6个在主穗和分蘖穗上均检测到。在与主穗穗伸出度相关的11个QTL中,q PE-7-1在4种环境下均被检测到,解释的表型变异为9.49%~22.17%;q PE-1-1、q PE-1-2、q PE-6-1和q PE-9-2 4个QTL在2种环境下均被检测到。在与分蘖穗穗伸出度相关的7个QTL中,q PE-1-2、q PE-7-1和q PE-6-1 3个QTL在2种环境中均被检测到,解释的表型变异率分别为4.35%~12.64%、13.22%~20.89%和11.49%~15.73%。  相似文献   

10.
玉米株高和穗位高的QTL定位   总被引:20,自引:0,他引:20       下载免费PDF全文
杨晓军  路明  张世煌  周芳  曲延英  谢传晓 《遗传》2008,30(11):1477-1486
摘要: 用玉米自交系掖478和丹340构建了397个F2:3家系群体, 利用双亲间多态的150个共显性SSR标记绘制分子连锁图谱, 图谱总长度1 478.7 cM, 标记间平均距离10.0 cM。在5种环境下对株高和穗位高性状进行鉴定, 复合区间作图法检测到21个株高QTL和25个穗位高QTL。于第1和5染色体的umc2025-umc1035及umc1822-bnlg1118区域检测到平均贡献率分别为12.2%和14.9%的株高QTL。于第3和5染色体的phi029-umc1102及phi109188-bnlg1118区域检测到平均贡献率达到10.2%和22.8%的穗位高QTL。第5染色体的Bin5.05-5.07区域可能存在控制株高和穗位高的主效QTL。株高和穗位高的基因作用方式主要是加性和部分显性效应。文章还分析了群体大小及试验环境对株高和穗位高QTL定位结果的影响  相似文献   

11.
Huangzaosi, Qi319, and Ye478 are foundation inbred lines widely used in maize breeding in China. To elucidate genetic base of yield components and kernel-related traits in these elite lines, two F2:3 populations derived from crosses Qi319?×?Huangzaosi (Q/H, 230 families) and Ye478?×?Huangzaosi (Y/H, 235 families), as well as their parents were evaluated in six environments including Henan, Beijing, and Xinjiang in 2007 and 2008. Correlation and hypergeometric probability function analyses showed the dependence of yield components on kernel-related traits. Three mapping procedures were used to identify quantitative trait loci (QTL) for each population: (1) analysis for each of the six environments, (2) joint analysis for each of the three locations across 2?years, and (3) joint analysis across all environments. For the eight traits measured, 90, 89, and 58 QTL for Q/H, and 72, 76, and 51 QTL for Y/H were detected by the three QTL mapping procedures, respectively. About 70% of the QTL from Q/H and 90% of the QTL from Y/H did not show significant QTL?×?environment interactions in the joint analysis across all environments. Most of the QTL for kernel traits exhibited high stability across 2?years at the same location, even across different locations. Seven major QTL detected under at least four environments were identified on chromosomes 1, 4, 6, 7, 9, and 10 in the populations. Moreover, QTL on chr. 1, chr. 4, and chr. 9 were detected in both populations. These chromosomal regions could be targets for marker-assisted selection, fine mapping, and map-based cloning in maize.  相似文献   

12.
Maize tassel inflorescence architecture is relevant to efficient production of F1 seed and yield performance of F1 hybrids. The objectives of this study were to identify genetic relationships among seven measured tassel inflorescence architecture traits and six calculated traits in a maize backcross population derived from two lines with differing tassel architectures, and identify Quantitative Trait Loci (QTL) involved in the inheritance of those tassel inflorescence architecture traits. A Principal Component (PC) analysis was performed to examine relationships among correlated traits. Traits with high loadings for PC1 were branch number and branch number density, for PC2 were spikelet density on central spike and primary branch, and for PC3 were lengths of tassel and central spike. We detected 45 QTL for individual architecture traits and eight QTL for the three PCs. For control of inflorescence architecture, important QTL were found in bins 7.02 and 9.02. The interval phi034—ramosa1 (ral) in bin 7.02 was associated with six individual architecture trait QTL and explained the largest amount of phenotypic variation (17.3%) for PC1. Interval bnlg344–phi027 in bin 9.02 explained the largest amount of phenotypic variation (14.6%) for PC2. Inflorescence architecture QTL were detected in regions with candidate genes fasciated ear2, thick tassel dwarf1, and ral. However, the vast majority of QTL mapped to regions without known candidate genes, indicating positional cloning efforts will be necessary to identify these genes.  相似文献   

13.
Root system architecture (RSA) is seldom considered as a selection criterion to improve yield in maize breeding, mainly because of the practical difficulties with their evaluation under field conditions. In the present study, phenotypic profiling of 187 advanced-backcross BC(4)F(3) maize lines (Ye478?×?Wu312) was conducted at different developmental stages under field conditions at two locations (Dongbeiwang in 2007 and Shangzhuang in 2008) for five quantitative root traits. The aims were to (1) understand the genetic basis of root growth in the field; (2) investigate the contribution of root traits to grain yield (GY); and (3) detect QTLs controlling root traits at the seedling (I), silking (II) and maturation (III) stages. Axial root (AR)-related traits showed higher heritability than lateral root (LR)-related traits, which indicated stronger environmental effects on LR growth. Among the three developmental stages, root establishment at stage I showed the closest relationship with GY (r?=?0.33-0.43, P?相似文献   

14.
We analyzed the genetic basis of morphological differences between two wild species of teosinte (Zea diploperennis and Z. mays ssp. parviglumis), which are relatives of maize. These two species differ in a number of taxonomically important traits including the structure of the tassel (male inflorescence), which is the focus of this report. To investigate the genetic inheritance of six tassel traits, quantitative trait locus (QTL) mapping with 95 RFLP markers was employed on a population of 425 F2 plants. Each trait was analyzed by interval mapping (IM) and composite interval mapping (CIM) to identify and characterize the QTL controlling the differences in tassel morphology. We detected two to eight QTL for each trait. In total, 30 QTL with IM and 33 QTL with CIM were found for tassel morphology. QTL for several of the traits mapped near each other, suggesting pleiotropy and/or linkage of QTL. The QTL showed small to moderate magnitudes of effect. No QTL of exceptionally large effect were found as seen under domestication and in the case of some other natural species. Thus, the model involving major QTL of large effect seems not to apply to the traits and species analyzed. A mixture of QTL with positive and negative allelic effects was found for most tassel traits and may suggest a history of periodic changes in the direction of selection during the divergence of Z. diploperennis and Z. mays ssp. parviglumis or fixation of QTL alleles by random genetic drift rather than selection.  相似文献   

15.
Fusarium ear rot is a prevalent disease in maize, reducing grain yields and quality. Resistance breeding is an efficient way to minimize losses caused by the disease. In this study, 187 lines from a RIL population along with the resistant (87-1) and susceptible (Zong 3) parents were planted in Zhengzhou and Beijing with three replications in years 2004 and 2006. Each line was artificially inoculated using the nail-punch method. Significant genotypic variation in response to Fusarium ear rot was detected in both years. Based on a genetic map containing 246 polymorphic SSR markers with average genetic distances of 9.1 cM, the ear-rot resistance QTL were firstly analyzed by composite interval mapping (CIM). Three QTL were detected in both Zhengzhou and Beijing in 2004; and three and four QTL, respectively, were identified in 2006. The resistant parent contributed all resistance QTL. By using composite interval mapping and a mixed model (MCIM), significant epistatic effects on Fusarium ear rot as well as interactions between mapped loci and environments were observed across environments. Two QTL on chromosome 3 (3.04 bin) were consistently identified across all environments by the two methods. The major resistant QTL with the largest effect was flanked by markers umc1025 and umc1742 on chromosome 3 (3.04 bin), explaining 13–22% of the phenotypic variation. The SSR markers closely flanking the major resistance QTL will facilitate marker-assisted selection (MAS) of resistance to Fusarium ear rot in maize breeding programs.  相似文献   

16.
选用抗玉米丝黑穗病自交系Mo17和SH15为供体,与受体感病自交系黄早四和昌7-2构建回交群体(BC3F1\BC4F2),通过田间人工接种玉米丝黑穗病原菌鉴定抗病性表现,评价群体抗病性。研究结果显示黄早四×(黄早四×Mo17)BC4F2群体发病率明显高于BC3F1群体;两个BC4F2黄早四×(黄早四×Mo17)和昌7-2×(昌7-2×SH15)群体的发病率差异较大。采用SSR标记分析抗病株的供体染色体导入片段,发现随着回交次数的增多,导入片段数量减少,但不同回交群体中供体导入片段数目明显不同。通过连锁不平衡分析,在染色体2.09和3.04区段发掘和验证2个抗玉米丝黑穗病主效QTL,连锁标记分别为umc2077和phio53或bnlg1965。本文研究结果为抗丝黑穗病基因精细定位和分子聚合育种提供了信息和材料。  相似文献   

17.
Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL analysis of low-temperature germination ability. There were significant differences in germination-related traits under both conditions of low temperature (12°C/16h, 18°C/8h) and optimum temperature (28°C/24h) between the parental lines. Only three QTL were identified for controlling optimum-temperature germination rate. Six QTL controlling low-temperature germination rate were detected on chromosome 4, 5, 6, 7 and 9, and contribution rate of single QTL explained between 3.39%~11.29%. In addition, six QTL controlling low-temperature primary root length were detected in chromosome 4, 5, 6, and 9, and the contribution rate of single QTL explained between 3.96%~8.41%. Four pairs of QTL were located at the same chromosome position and together controlled germination rate and primary root length under low temperature condition. The nearest markers apart from the corresponding QTL (only 0.01 cM) were umc1303 (265.1 cM) on chromosome 4, umc1 (246.4 cM) on chromosome 5, umc62 (459.1 cM) on chromosome 6, bnl14.28a (477.4 cM) on chromosome 9, respectively. A total of 3155 candidate genes were extracted from nine separate intervals based on the Maize Genetics and Genomics Database (http://www.maizegdb.org). Five candidate genes were selected for analysis as candidates putatively affecting seed germination and seedling growth at low temperature. The results provided a basis for further fine mapping, molecular marker assisted breeding and functional study of cold-tolerance at the stage of seed germination in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号