首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Summary A field study of the foraging strategy used by the ponerine ant,Hagensia havilandi is reported. They have permanent nests in the leaf litter of coastal forests.H. havilandi is a diurnal forager and collects a variety of live and dead arthropods. These predatory ants exhibit individual foraging with no cooperation in the search for or retrieval of food items. Three colonies were observed and showed similar temporal and spatial foraging patterns. The paths of individual ants were followed and the results showed that the foragers exhibit area fidelity, and return to the nest via a direct route on finding on prey item. Several foragers did not return to the nest at dusk but returned the following morning. Occasionally a limited amount of tandem recruitment was displayed.  相似文献   

2.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

3.
In social insects, selection takes place primarily at the level of the colony. Therefore, unlike solitary insects, social species are expected to forage at rates that maximize colony fitness rather than individual fitness. Workers can increase the net benefit of foraging by responding to increased resource availability, by responding more strongly to higher‐quality resources, and by decreasing the uncertainty with which nestmates find resources. Unlike many ants and social bees, no social wasp is known to utilize a nest‐based recruitment signal to inform nestmates of food location. On the other hand, wasps do learn the odor of food brought to the nest and use this cue to locate the food source outside the nest. Here, we quantify the effects of three food‐associated variables on the allocation of foraging effort in the yellowjacket Vespula germanica. We used an experimental approach to assess whether resource quantity, quality, or associated olfactory information affect the probability that a forager will leave the nest on a foraging trip. We addressed these questions by inserting a known amount of sucrose solution directly into nests and recording foraging effort (departure rate) over the subsequent hour‐long observation period. No differences were found in foraging effort because of the presence/absence of olfactory cues, but there was strong evidence that foraging effort increased in response to resource influx and resource quality. Thus, while olfactory cues are learned in the nest, only resource quality and the cue of increased amount of food in the nest factor into a forager's decision of whether or not to depart on a foraging trip. However, as prior work has shown, once a wasp forager leaves the nest, it uses the learned olfactory cues to aid in finding resources.  相似文献   

4.
We study the influence of food distance on the individual foraging behaviour of Lasius niger scouts and we investigate which cue they use to assess their distance from the nest and accordingly tune their recruiting behaviour. Globally, the number of U-turns made by scouts increases with distance resulting in longer travel times and duration of the foraging cycle. However, over familiar areas, home-range marking reduces the frequency and thereby the impact of U-turns on foraging times leading to a quicker exploitation of food sources than over unmarked set-ups. Regarding information transfer, the intensity of the recruitment trail reaching the nest decreases with increasing food distance for all set-ups and is even more reduced in the absence of home-range marking. Hence, the probability of a scout continuing to lay a trail changes along the homeward journey but in a different way according to home-range marking. Over unexplored setups, at a given distance from the food source, the percentage of returning trail-laying ants remains unchanged for all tested nest-feeder distances. Hence, the tuning of the trail recruiting signal by scouts was not influenced by an odometric estimate of the distance already travelled by the ants during their outward journey to the food. By contrast, over previously explored set-ups, a distance-related factor – that is the intensity of home-range marking – strongly influences their recruiting behaviour. In fact, over a home-range marked bridge, the probability of returning ants maintaining their trail-laying behaviour increases with decreasing food distance while the gradient of home-range marks even induces ants which have stopped laying a trail to resume this behaviour in the nest vicinity. We suggest that home-range marking laid passively by walking ants is a relevant cue for scouts to indirectly assess distance from the nest but also local activity level or foraging risks in order to adaptively tune trail recruitment and colony foraging dynamics. Received 13 July 2004; revised 26 January and 20 May 2005; accepted 2 July 2005.  相似文献   

5.
J. Zee  D. Holway 《Insectes Sociaux》2006,53(2):161-167
Invasive ants often displace native ants, and published studies that focus on these interactions usually emphasize interspecific competition for food resources as a key mechanism responsible for the demise of native ants. Although less well documented, nest raiding by invasive ants may also contribute to the extirpation of native ants. In coastal southern California, for example, invasive Argentine ants (Linepithema humile) commonly raid colonies of the harvester ant, Pogonomyrmex subnitidus. On a seasonal basis the frequency and intensity of raids vary, but raids occur only when abiotic conditions are suitable for both species. In the short term these organized attacks cause harvester ants to cease foraging and to plug their nest entrances. In unstaged, one-on-one interactions between P. subnitidus and L. humile workers, Argentine ants behaved aggressively in over two thirds of all pair-wise interactions, despite the much larger size of P. subnitidus. The short-term introduction of experimental Argentine ant colonies outside of P. subnitidus nest entrances stimulated behaviors similar to those observed in raids: P. subnitidus decreased its foraging activity and increased the number of nest entrance workers (many of which labored to plug their nest entrances). Raids are not likely to be the result of competition for food. As expected, P. subnitidus foraged primarily on plant material (85% of food items obtained from returning foragers), but also collected some dead insects (7% of food items). In buffet-style choice tests in which we offered Argentine ants food items obtained from P. subnitidus, L. humile only showed interest in dead insects. In other feeding trials L. humile consistently moved harvester ant brood into their nests (where they were presumably consumed) but showed little interest in freshly dead workers. The raiding behavior described here obscures the distinction between interspecific competition and predation, and may well play an important role in the displacement of native ants, especially those that are ecologically dissimilar to L. humile with respect to diet. Received 15 July 2005; revised 19 October 2005; accepted 26 October 2005.  相似文献   

6.
To advance our understanding of the causes and the consequences of budding (colony multiplication by fragmentation of main nests), we investigated nest movement in the facultatively polydomous Pharaoh ant, Monomorium pharaonis. Demographic data revealed that Pharaoh ants are highly polygynous and have a relatively low worker to queen ratio of 12.86. Budding experiments demonstrated that the number of available bud nests has a significant effect on colony fragmentation and increasing the number of bud nests resulted in smaller colony fragments. The overall distribution among bud nests was uneven, even though there was no evidence that the different life stages and castes partitioned unevenly among the bud nests and the analysis of individual colonies revealed no evidence of an uneven split in any of the colonies. This demonstrates that Pharaoh ants have the ability to exert social control over colony size and caste proportions during budding, which may contribute to their success as an invasive ant. The intensity of nest disturbance had a significant effect on whether or not the ants migrated into bud nests. Major disturbance resulted in the ants abandoning the source nest and migrating to bud nests and minor disturbance did not stimulate the ants to abandon the source nest. The results of the successive budding experiment which allowed the ants the opportunity to bud into progressively smaller nest fragments demonstrate that Pharaoh ants maintain a preferred minimum group size of 469 ± 28 individuals. Food allocation experiments utilizing protein marking revealed that nest fragmentation in Pharaoh ants has no negative impact on intracolony food distribution. Overall, our results suggest that nest units in the Pharaoh ant behave like cooperative, rather than competitive, entities. Such cooperation is most likely facilitated by the fact that individuals in all bud nests are genetically related, remain in close proximity to each other, and may continue to exchange individuals after budding.  相似文献   

7.
Summary Colonies and nests ofApoica pallens in the llanos region of Venezuela range from small foundress nests to large mature colonies. Nests are sited on small diameter, near-horizontal branches in a variety of shrub and tree species. During the day, adult wasps cluster on the face of the nest in an array that seems to be determined by orientation to gravity; defense of the colony against parasitoids and ants by the resting wasps may be more a passive than an active behavior. Wasps fan their wings to cool the colony during the day, but no foraging for water accompanies the fanning behavior. Nightly foraging activity begins with the explosive departure from the nest of hundreds of wasps, most of which rapidly return. Moderate foraging levels early at night give way to very low foraging levels in pre-dawn hours. The period of moderate foraging may be extended for longer hours during increased moonlight. Foraging wasps collect arthropod provisions for larvae. Larvae produce a trophallactic saliva; adults engage in inter-adult trophallaxis; brood are cannibalized. During cluster formation prior to swarm emigration, adult wasps do not appear to scent-mark substrates such as leaves. Instead,A. pallens exhibits a calling behavior, unique among polistine wasps studied to date, in which the gaster is held rigidly away from the thorax and metasomal sternal glands are exposed. Swarms can emigrate during the day.A. pallens may incorporate absconding and colony relocation as features of its colony cycle in the highly seasonal llanos.  相似文献   

8.
This study investigates variation in collective behavior in a natural population of colonies of the harvester ant, Pogonomyrmex barbatus. Harvester ant colonies regulate foraging activity to adjust to current food availability; the rate at which inactive foragers leave the nest on the next trip depends on the rate at which successful foragers return with food. This study investigates differences among colonies in foraging activity and how these differences are associated with variation among colonies in the regulation of foraging. Colonies differ in the baseline rate at which patrollers leave the nest, without stimulation from returning ants. This baseline rate predicts a colony's foraging activity, suggesting there is a colony-specific activity level that influences how quickly any ant leaves the nest. When a colony's foraging activity is high, the colony is more likely to regulate foraging. Moreover, colonies differ in the propensity to adjust the rate of outgoing foragers to the rate of forager return. Naturally occurring variation in the regulation of foraging may lead to variation in colony survival and reproductive success.  相似文献   

9.
Summary Australian meat ants often inhabit colonies with widely dispersed nest holes, and this study examines how resource is harvested and distributed in a colony ofIridomyrmex sanguineus Smith (Formicidae: Dolichoderinae). The three principal types of foragers (tenders, honeydew transporters, scavengers) exhibited nest hole fidelity, where harvested resource was consistently delivered to the same nest hole by each foraging individual. Australian meat ants thus use a harvesting system based on dispersed central place foraging. Evidence of frequent larval transport among nest holes, age polyethism developing in the direction of foraging, and the tendency for nest-associated workers to accept new nest holes more readily than foragers, suggests that workers develop fidelity to the particular nest hole in which they eclose. Coupled with larval transport, nest hole fidelity may allow a colony with widely dispersed nest holes to adjust its structure to more efficiently harvest a resource distributed unevenly in space or time.  相似文献   

10.
Summary This study provides quantitative field data on the natural history and foraging behaviour of the Neotropical bromeliad-nesting ant Gnamptogenys moelleri (Ponerinae) in a sandy plain forest in Southeast Brazil. The ant nested on different bromeliad species and the nests were more frequently found in bigger bromeliads. The species used a wide array of invertebrates in its diet, hunting for live prey and scavenging the majority of the items from dead animals. The food items varied greatly in size (1 to 26 mm). Hunting was always performed by solitary workers. Retrieving was performed by solitary workers (small items), or by a group of 3 to 12 workers recruited to the food source (large items). Almost all G. moelleri foraging activity was restricted to the nest bromeliad. In the warm period more ants left the nest to forage, and foraging trips achieved greater distances compared to the cool season. Trap data revealed that overall availability of arthropod prey is higher in the summer than in the winter. The opportunism in nest site use and in foraging behaviour, the small foraging area, as well as the seasonal differences in foraging activity are discussed and compared with other tropical ants.Received 30 May 2003; revised 22 September 2003; accepted 3 October 2003.  相似文献   

11.
The foraging behaviour of social insects is highly flexible because it depends on the interplay between individual and collective decisions. In ants that use foraging trails, high ant flow may entail traffic problems if different workers vary widely in their walking speed. Slow ants carrying extra‐large loads in the leaf‐cutting ant Atta cephalotes L. (Hymenoptera: Formicidae) are characterized as ‘highly‐laden’ ants, and their effect on delaying other laden ants is analyzed. Highly‐laden ants carry loads that are 100% larger and show a 50% greater load‐carrying capacity (i.e. load size/body size) than ‘ordinary‐laden’ ants. Field manipulations reveal that these slow ants carrying extra‐large loads can reduce the walking speed of the laden ants behind them by up to 50%. Moreover, the percentage of highly‐laden ants decreases at high ant flow. Because the delaying effect of highly‐laden ants on nest‐mates is enhanced at high traffic levels, these results suggest that load size might be adjusted to reduce the negative effect on the rate of foraging input to the colony. Several causes have been proposed to explain why leaf‐cutting ants cut and carry leaf fragments of sizes below their individual capacities. The avoidance of delay in laden nest‐mates is suggested as another novel factor related to traffic flow that also might affect load size selection The results of the presennt study illustrate how leaf‐cutting ants are able to reduce their individual carrying performance to maximize the overall colony performance.  相似文献   

12.
Leaf-cutting ants cut vegetation into small fragments that they transport to the nest, where a symbiotic fungus cultivated by the ants processes the material. Since the harvested leaf fragments are incorporated into the fungus garden and not directly consumed by the workers, it is expected that foraging workers select plants by responding to those physical or chemical traits that promote maximal fungal growth, irrespective of the potential direct effects of these leaf features on them. In this paper I summarize experimental work focusing on the decision-making processes that occur at the individual level, and discuss to what extent individual complexity contributes to the emergence of collective foraging patterns. Although some basic features of self-organizing systems, such as the existence of regulatory positive and negative feedback loops, are expected to be involved in the collective organization of leaf-cutting ant foraging, I contend that they are combined with complex individual responses that may result from the integration of local information during food collection with an assessment of colony conditions.  相似文献   

13.
Summary Understanding the foraging behavior of an animal is critically dependent upon knowledge of the constraints on that animal. In this study, I tested whether fidelity to foraging direction acts as a behavioral constraint to foraging western harvester ants, Pogonomyrmex occidentalis. Individual P. occidentalis foragers showed strong fidelity to foraging route and direction. Directional fidelity in this population was not related to trunk trail use, food specialization, colony activity levels, or mortality risks. Directional fidelity constrained individual foraging decisions; when colonies were offered seeds of different quality in 2 directions, individuals did not switch directions to obtain the energetically more rewarding seeds. Colony-level recruitment was increased for energetically more profitable seeds, indicating that colonial responses may compensate for the constraints of directional fidelity on individual foragers.  相似文献   

14.
We investigated how the type of food (sucrose or protein) and the presence of brood influence foraging decisions of Lasius niger L. scouts. In particular, we studied whether and how these parameters alter the drinking behaviour of scouts and the allocation of workers to food retrieving and recruiting tasks. We analysed drinking and recruiting behaviour of single scouts from nests with or without brood that encountered a proteinaceous or sucrose droplet. A substantial fraction of scouts encountering a proteinaceous droplet did not ingest it and did not then return to the nest whereas nearly all drank at sugar droplets; brood presence did not influence this decision. Once an ant started drinking, it needed to drink a critical volume before returning to the nest; this critical volume did not depend on the type of food and the presence of brood. Scouts laid a trail only if they returned to the colony. Food type and brood presence altered the proportion of individuals that laid a trail but not the individual trail-laying intensity. We discuss the consequences of this decision system through simple individual assessments and decision rules, with regard to the self-organized foraging patterns of this species and the efficient collective exploitation of natural resources.  相似文献   

15.
Females of the parasitic phorid Neodohrniphora sp. were collected in the field and released singly inside an observation chamber placed between a laboratory colony of Atta sexdens (L.) and its foraging arena. The number and speed of loaded and unloaded ants returning to the nest, the weight of foragers and their loads, the number of leaf fragments abandoned by ants, and the number of small workers 'hitchhiking' on leaf fragments were measured before phorids were released, while they were in the observation chamber, and after they were removed. Relatively few ants were attacked by Neodohrniphora sp., but the presence of flies prompted outbound ants to return to the nest and caused a significant reduction on the number and mass of foragers. Additionally, the weight of leaf fragments transported by ants was reduced and the number of abandoned fragments increased in response to Neodohrniphora sp. Presence of the parasitoid caused no significant changes in the number of hitchhiking ants. The regular ants' traffic was resumed after phorids were removed, but foraging activity remained below normal for up to three hours. In the field A. sexdens forages mostly at night, but colonies undergo periods of diurnal foraging during which ants are subject to parasitism from several species of phorid flies. Considering that daytime foraging may be necessary for nutritional or metabolical needs, phorids may have a significant impact on their hosts by altering their foraging behavior regardless of the numerical values of parasitism.  相似文献   

16.
1. The size–distance relationship among honeydew‐collecting foragers of the red wood ant Formica rufa was investigated. Within the colony territory, the size (as measured by head width) and fresh weight of samples of foragers were determined for ants ascending and descending trees near, and farther from, the central nest mound. 2. The mean size of the ants was significantly higher at far trees than at near trees in six out of the seven colonies investigated, confirming the general presence of the size–distance relationship. 3. In three colonies, a load–distance relationship was also found. For a given head width, honeydew‐carrying ants descending far trees were significantly heavier than those descending near trees (i.e. they were carrying heavier loads from trees farther away from the central nest mound). 4. This is the first time that both load–distance and size–distance relationships have been reported in foraging workers from the same ant colony. 5. The combined effects of these characteristics suggest that colony foraging efficiency is enhanced by far trees being visited by the larger workers that then return with heavier loads of honeydew.  相似文献   

17.
Summary Intraspecific interference competition in the harvester ant,Messor aciculatus, was studied. Colonies of this species were found not to have territories. Some nests were located very close to each other, and the foraging areas of the neighbors usually overlapped. Even though the frequency with which alien and resident ants met was very high in the vicinity of the nest entrances, aggressive interactions between them rarely occurred. However, when hostile workers encountered each other, they exhibited a kind of ritualized combat and the winner ejected, but did not injure the loser. If any aliens entered the nest, some of them were pulled out, mainly by the residents.Aliens roaming near a neighbor's nest entrance ferociously attacked the residents carrying seeds in their mandibles and robbed them. On other occasions, aliens entered the nest and stole the collected seed. Although seed robbing and stealing occurred among neighboring colonies, there were remarkable differences in the frequency of their occurrence. The results of field observations and experiments suggest the existence of a dominance order among the neighbors. In one instance, extermination of an inferior colony by its neighbor was observed. The raider colony transferred the stored seeds from the nest of the inferior colony to its own and deposited the larvae and workers some distance away from the nest.The influence of ritualized combat and food robbing on colony activities, and the ecological significance of this interference behavior in terms of spatial distribution and temporal persistence of the nest sites, is discussed.  相似文献   

18.
Summary A month-long study was conducted on the comparative foraging behavior of 20 colonies of the leafcutting ant, Atta cephalotes L. in Santa Rosa National Park, Guanacaste Province, Costa Rica. The study was conducted during the middle of the wet season, when trees had mature foliage and the ants were maximally selective among species of potential host plants. The colonies always gathered leaves from more than a single tree species but on average one species constituted almost half the diet with the remaining species being of geometrically decreasing importance. Colonies exhibited greater diversity in their choice of leaves and lower constancy of foraging when the average quality of resource trees was lower, as predicted by elementary optimal foraging theory. Furthermore, the ants were more selective of the species they attacked at greater distances from the nest. However, the ants sometimes did not attack apparently palatable species, and often did not attack nearby individuals of species they were exploiting at greater distances.A classical explanation for why leafcutting ants exploit distant host trees when apparently equally good trees are nearer, is that the ants are pursuing a strategy of conserving resources to avoid long-term overgrazing pressure on nearby trees. We prefer a simpler hypothesis: (1) Trees of exploited species exhibit individual variation in the acceptability of their leaves to the ants. (2) The abundance of a species will generally increase with area and radial distance from the nest, so the probability that at least one tree of the species will be acceptable to the ants also increases with distance. (3) The ants forage using a system of trunk-trails cleared of leaf litter, which significantly reduces their travel time to previously discovered, high-quality resource trees (by a factor of 4- to 10-fold). (4) Foragers are unware of the total pool of resources available to the colony. Therefore once scouts have chanced upon a tree which is acceptable, the colony will concentrate on harvesting from that tree rather than searching for additional sources of leaves distant from the established trail.  相似文献   

19.
This study focuses on different factors affecting the level of aggression in the desert ant Cataglyphis fortis. We found that the readiness to fight against conspecific ants was high in ants captured close to the nest entrance (0- and 1-m distances). At a 5-m distance from the nest entrance the level of aggression was significantly lower. As the mean foraging range in desert ants by far exceeds this distance, the present account clearly shows that in C. fortis aggressive behavior is displayed in the context of nest, rather than food-territory defense. In addition, ants were more aggressive against members of a colony with which they had recently exchanged aggressive encounters than against members of a yet unknown colony. This finding is discussed in terms of a learned, enemy-specific label-template recognition process.  相似文献   

20.
Food acquisition in central-place foraging animals demands efficient detection and retrieval of resources. Most ant species rely on a mass recruitment foraging strategy, which requires that some potential foragers remain at the nest where they can be recruited to food once resources are found. Because this strategy reduces the number of workers initially looking for food, it may reduce the food detection rate while increasing the postdiscovery food retrieval rate. In previous studies this tradeoff has been analyzed by computer simulation and mathematical models. Both kinds of models show that food acquisition rate is greatly influenced by food distribution and resource patch size: as food is condensed into fewer patches, the maximal acquisition rate is achieved by a shift to fewer initial searchers and more potential recruits. In general, these models show that a mass recruitment strategy is most effective when resources are clumped. We tested this prediction in two experiments by letting laboratory colonies of the Argentine ant (Linepithema humile) forage for resources placed in different distributions. When all prey were small, retrieval rate increased with increasing resource patch size, in support of foraging models. When prey were large, however, the mass of prey returned to the colony over time was much lower than when prey were small and widely distributed. As more ants reached a large prey item, the distance the prey item was transported decreased due to a greater emphasis on feeding rather than transport. Because Argentine ants can transport more biomass externally than they can ingest, food retrieval that depends only on ingestion can depress the biomass retrieval rate. Thus, our results generally support theoretical foraging models, but we show how prey size, through differential prey-handling behavior, can produce an outcome greatly different from that predicted only on the distribution of resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号