首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen free radicals have been proposed to be major causative agents in secondary brain damage in traumatic and ischemic brain injury. Edarabone (3-methyl-1-phenyl-2-pyrazolin-5-one), a powerful antioxidative radical scavenger, is the only drug currently available in clinical practice for the treatment of cerebral infarction. There has been increasing interest in the role of nitric oxide (NO(*)) as a causative agent in brain injury. In the present study, we investigated the scavenging effect of Edarabone on nitric oxide (NO(*)), using an electron spin resonance (ESR) method. NO(*) was generated from 1-hydroxy-2-oxo-3-(N-3-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC-7), and analyzed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy (carboxy-PTI) produced from the reaction between 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (carboxy-PTIO) and NO(*). Edarabone directly scavenged NO(*) in a dose-dependent manner. These ESR studies indicate that Edarabone has a direct NO(*) scavenging activity and the additional possibility of novel neuroprotective activities against brain injury and focal cerebral ischemia.  相似文献   

2.
3.
Biofilms are a widespread form of occurrence of microorganisms in nature, and understanding the mechanism of regulation of their formation is of unquestionable practical significance for medicine and biotechnology. In the present work, the effect of nitric oxide (NO) on biofilm formation by Lactobacillus plantarum was investigated and the micromolar concentrations of exogenous NO were shown to have a negative effect on this process due to its toxic effect on the cells. However, the decrease in the level of endogenous NO in bacteria in the presence of a nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) impaired the characteristics of the forming biofilms, as was evident from the decrease in their size.  相似文献   

4.
We describe the regulation mechanisms of the Na(+)-dependent neutral amino acid transporter ASCT2 via nitric oxide (NO) in the human intestinal cell line, Caco-2. Exposure of Caco-2 cells to S-nitrosothiol, such as S-nitroso-N-acetyl-DL-penicillamine (SNAP) and S-nitrosoglutathione, and the NO-donor, NOC12, concentration- and time-dependently increased Na(+)-dependent alanine uptake. Kinetic analyses indicated that SNAP increases the maximal velocity (V(max)) of Na(+)-dependent alanine uptake in Caco-2 cells without affecting the Michaelis-Menten constant (K(t)). The stimulatory effect was partially eliminated by actinomycin D and cycloheximide. Increased Na(+)-dependent alanine uptake by SNAP was partially abolished by the NO scavengers, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide sodium salt (carboxy-PTIO) and N-(dithiocarboxy)sarcosine disodium salts (DTCS), as well as the NADPH oxidase inhibitor, diphenyleneiodonium. RT-PCR revealed that Caco-2 cells expressed the Na(+)-dependent neutral amino acid transporter ASCT2, but not the other Na(+)-dependent neutral amino acid transporters ATB(0,+) and B(0)AT1. These results suggested that functional up-regulation of ASCT2 by SNAP might be partially associated with an increase in the density of transporter protein via de novo synthesis.  相似文献   

5.
Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological processes in plants, most of them involving cross-talk with traditional phytohormones. Auxin is the main hormone that regulates root system architecture. In this communication we report that NO promotes lateral root (LR) development, an auxin-dependent process. Application of the NO donor sodium nitroprusside (SNP) to tomato (Lycopersicon esculentum Mill.) seedlings induced LR emergence and elongation in a dose-dependent manner, while primary root (PR) growth was diminished. The effect is specific for NO since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) blocked the action of SNP. Depletion of endogenous NO with CPTIO resulted in the complete abolition of LR emergence and a 40% increase in PR length, confirming a physiological role for NO in the regulation of root system growth and development. Detection of endogenous NO by the specific probe 4,5-diaminofluorescein diacetate (DAF-2 DA) revealed that the NO signal was specifically located in LR primordia during all stages of their development. In another set of experiments, SNP was able to promote LR development in auxin-depleted seedlings treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Moreover, it was found that LR formation induced by the synthetic auxin 1-naphthylacetic acid (NAA) was prevented by CPTIO in a dose-dependent manner. All together, these results suggest a novel role for NO in the regulation of LR development, probably operating in the auxin signaling transduction pathway.Abbreviations CPTIO 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide - DAF-2 DA 4,5-Diaminofluorescein diacetate - LR Lateral root - NAA 1-Naphthylacetic acid - NO Nitric oxide - NPA N-1-Naphthylphthalamic acid - PR Primary root - SNP Sodium nitroprusside  相似文献   

6.
In strains of the snail Biomphalaria glabrata (Gastropoda) that are resistant to the parasite Schistosoma mansoni (Trematoda), hemocytes in the hemolymph are responsible for elimination of S. mansoni sporocysts. The defensive role of reactive nitrogen species was investigated in in vitro interactions between hemocytes derived from the resistant 13-16-R1 strain of B. glabrata and the parasite. The nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine methylester (L-NAME) and the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide reduced cell-mediated killing of S. mansoni sporocysts. To determine if peroxynitrite (ONOO-) is involved in killing, assays were run in the presence of the ONOO- scavengers uric acid and deferoxamine. These did not influence the rate of parasite killing, indicating that NO is directly responsible for mediating cytotoxicity, but ONOO- is not. The combination of the NOS inhibitor L-NAME and catalase, an enzyme that detoxifies hydrogen peroxide (H2O2), reduced average sporocyst mortality to a greater extent than L-NAME alone. Killing of the sporocysts was, however, not totally inhibited. It is suggested that NO and H2O2 are both involved in hemocyte-mediated toxicity of 13-16-R1 B. glabrata against S. mansoni sporocysts.  相似文献   

7.
A concentration-dependent toxicity of hydrogen peroxide (H(2)O(2)) was observed on growth yield, chlorophyll a content and chlorophyll fluorescence characteristics of the green microalga Scenedesmus obliquus under laboratory batch culture conditions. The addition of sodium nitroprusside, a nitric oxide (NO) donor, in combination with H(2)O(2) prevented chlorophyll losses, and the inhibition level of growth yield, maximum quantum yield of photosystem II (PSII) and the light-adapted quantum yield of PSII were significantly reduced. The antioxidant compounds, penicillamine and thiourea also reduced the damage caused by H(2)O(2) exposure. The protective actions of sodium nitroprusside were, however, arrested in cultures where sodium nitroprusside was supplemented in combination with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), a specific scavenger of NO. The NO(3)(-)-grown Scenedesmus depicted less sensitivity to H(2)O(2) toxicity with respect to the quantum yields of PSII as compared to its NH(4)(1)-grown counterpart. The role of NO in providing protection against H(2)O(2) toxicity to the processes under study was discussed.  相似文献   

8.
Inducible nitric oxide synthase (NOS II) efficiently catalyzes the oxidation of N-(4-chlorophenyl)N'-hydroxyguanidine 1 by NADPH and O2, with concomitant formation of the corresponding urea and NO. The characteristics of this reaction are very similar to those of the NOS-dependent oxidation of endogenous Nomega-hydroxy-L-arginine (NOHA), i.e., (i) the formation of products resulting from an oxidation of the substrate C=N(OH) bond, the corresponding urea and NO, in a 1:1 molar ratio, (ii) the absolute requirement of the tetrahydrobiopterin (BH4) cofactor for NO formation, and (iii) the strong inhibitory effects of L-arginine (L-arg) and classical inhibitors of NOSs. N-Hydroxyguanidine 1 is not as good a substrate for NOS II as is NOHA (Km = 500 microM versus 15 microM for NOHA). However, it leads to relatively high rates of NO formation which are only 4-fold lower than those obtained with NOHA (Vm = 390 +/- 50 nmol NO min-1 mg protein-1, corresponding roughly to 100 turnovers min-1). Preliminary results indicate that some other N-aryl N'-hydroxyguanidines exhibit a similar behavior. These results show for the first time that simple exogenous compounds may act as NO donors after oxidative activation by NOSs. They also suggest a possible implication of NOSs in the oxidative metabolism of certain classes of xenobiotics.  相似文献   

9.
Summary Accumulative evidence has supported the role of nitric oxide (NO) in a variety of normal physiological functions as well as many pathological conditions. In this study, we examined the possible diabetogenicity of NO by measuring the expression of the insulin receptor substrate (IRS)-1 in rat hepatocytes and skeletal myocytes. IRS-1 is important in the insulin-mediated signal transduction pathway in both liver and skeletal muscle. Exogenous NO donated by S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) resulted in significant reduction in levels of IRS-1 in both cells, when compared to the insulin-stimulated control (p<0.001). Reversal to near normal levels was achieved using the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO). SNAP was the more potent drug, and the skeletal myocytes were the more sensitive cells to the inhibitory effects of NO released from the drugs. These results provide further evidence that exogenous NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.  相似文献   

10.
In this report, we demonstrate that sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, promoted adventitious root formation mediated by auxin and nitric oxide (NO). Application of the H2S donor to seedling cuttings of sweet potato (Ipomoea batatas L.) promoted the number and length of adventltious roots in a dose-dependent manner. It was also verified that H2S or HS- rather than other sulfur-containing components derived from NariS could be attributed to the stimulation of adventitious root formation. A rapid Increase In endogenous H2S, indole acetic acid (IAA) and NO were sequentially observed in shoot tips of sweet potato seedlings treated with HallS. Further investigation showed that HzS-mediated root formation was alleviated by N-l-naphthylphthalamic acid (NPA), an IAA transport inhibitor, and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), an NO scavenger. Similar phenomena in H2S donor-dependent root organogenesis were observed in both excised willow (Sallx matsudana var. tortuosa Vilm) shoots and soybean (Glycine max L.) seedlings. These results indicated that the process of H2S-induced adventitious root formation was likely mediated by IAA and NO, and that H2S acts upstream of IAA and NO signal transduction pathways.  相似文献   

11.
Wang Y  Jiang X  Liu J  Zhao M  Kang G  Wu J  Peng L  Peng S 《Molecular bioSystems》2011,7(5):1678-1683
Nitronyl nitroxides are capable of preventing cells, tissues, and organs from radical-induced damage through scavenging NO˙, ˙O(2)(-) and ˙OH. In order to explore the conversions of nitronyl nitroxides in biological systems with and without NO˙, HPLC-MS aided PC12 cell systems were developed, and the conversions of 2-(3'-nitrophenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl -3-oxide (3-nitro-PTIO), 1-oxyl-2-(3'-nitrophenyl)-4,4,5,5-tetramethylimidazoline (3-nitro-PTI), and 1-hydroxyl-2-(3'-nitrophenyl)-4,4,5,5-tetramethylimidazoline (3-nitro-PTIH) were quantitatively monitored. In these systems 3-nitro-PTIO and 3-nitro-PTI were time-dependently converted to 3-nitro-PTIH, while no conversion of 3-nitro-PTIH was detected. Free radical NO˙ donors (sodium nitroprusside, SNP) accelerated the conversions, but had no effect upon the conversion product. In the in vitro and in vivo assays the 3-nitro-PTIH treated cells and mice exhibited no toxic response.  相似文献   

12.
Chen YH  Chao YY  Hsu YY  Hong CY  Kao CH 《Plant cell reports》2012,31(6):1085-1091
Lateral root (LR) development performs the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of nitric oxide (NO), auxin, and hemin (Hm) on LR formation in rice. Treatment with Hm [a highly effective heme oxygenase (HO) inducer], sodium nitroprusside (SNP, an NO donor), or indole-3-butyric acid (IBA, a naturally occurring auxin) induced LR formation and HO activity. LR formation and HO activity induced by SNP and IBA but not Hm was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. As well, Hm, SNP, and IBA could induce OsHO1 mRNA expression. Zn protoporphyrin IX (the specific inhibitor of HO) and hemoglobin (the carbon monoxide/NO scavenger) reduced LR number and HO activity induced by Hm, SNP, and IBA. Our data suggest that HO is required for Hm-, auxin-, and NO-induced LR formation in rice.  相似文献   

13.
Nitric oxide (NO) has been reported to be involved in the regulation of pseudopodia formation, phagocytosis and adhesion in macrophages through the reorganization of actin. In the present study, we directly separated the globular (G) and filamentous (F) actin from quiescent or NO-stimulated macrophage-like cell line RAW 264.7 cells in order to investigate the dynamic redistribution of actin pools. We also focused on the regulatory mechanisms of actin assembly, induced by NO and its possible subsequent signaling pathway. We showed that predominant G-actin coexisted with Triton X-100-insoluble filamentous (TIF) and Triton X-100-soluble filamentous actin in resting RAW 264.7 cells. The exogenous NO produced by (+/-)-(E)-2-[(E)-hydroxyimino]-6-methoxy-4-methyl-5-nitro-3-hexenamide (NOR1), the endogenous NO induced by lipopolysaccharide (LPS) plus interferon-gamma (IFNgamma), and dibutyryl-cGMP increased the contents of TIF-actin in dose- and time-dependent manners and altered its morphology. The increase in the TIF-actin contents induced by NOR1 or LPS plus IFNgamma was efficiently blocked by the radical scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide and the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or the arginine analogue N(G)-monomethyl-L-arginine acetate, respectively. Preincubation with the calmodulin antagonist W-7 almost completely blocked the NO-induced TIF-actin increase and morphological change. On the other hand, preincubation with C3 transferase, an inhibitor of Rho protein, efficiently prevented the change in cell morphology, but had no effect on the TIF-actin increase. We postulate that cGMP and subsequent Ca(2+)/calmodulin may be key regulators of actin reorganization in NO-stimulated RAW 264.7 cells.  相似文献   

14.
Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde, the levels of which are increased in the blood of smokers. To determine if acrolein is involved in the pathology of smoke angiopathy, the effect of acrolein on human umbilical vein endothelial cells (HUVEC) was examined. Intracellular nitric oxide (NO) levels, determined using diaminofluorescein-2 diacetate (DAF-2 DA), an NO sensitive fluorescent dye, were found to be increased after treatment in HUVEC with 10 microM acrolein. The measurement of nitrite with 2,3-diaminonaphthalene and a Western blot analysis revealed that nitrite and S-nitroso-cysteine levels were increased in a dose-dependent manner, confirming that NO production is increased by acrolein. The increase was not reduced by treatment with 10mM N-acetyl-l-cysteine (NAC), an anti-oxidant, but was reduced with 10 microM of the intracellular calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester. Acrolein-stimulated NO production was significantly reduced by pretreatment with 1mM N(G)-nitro-l-arginine-methyl ester (L-NAME), an NO synthase inhibitor. The cytotoxicity of acrolein was reduced by pretreatment with 10 microM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO), an intracellular NO scavenger, or 1mM L-NAME, whereas it was not reduced by 10mM NAC, 20 microM Curcumin, another peroxide scavenger, or 100 microM Mn(III)TMPyP, a superoxide dismutase mimic. Nuclear staining and a Western blot analysis using an anti-cleaved caspase 3 antibody revealed that the reduced viability of HUVEC by acrolein was due to apoptosis, which was reversed after pretreatment with 0.1mM carboxy-PTIO or 1mM L-NAME. Thus, acrolein increases intracellular calcium production to induce intracellular NO production by a calcium-dependent NO synthase, possibly eNOS, and the excess and rapid increase in NO might lead to the apoptosis of HUVEC. These data suggest that acrolein might be involved in the pathology of smoke angiopathy through the NO-induced apoptosis of endothelial cells.  相似文献   

15.
Rapid increase of NO release in plant cell cultures induced by cytokinin.   总被引:30,自引:0,他引:30  
N N Tun  A Holk  G F Scherer 《FEBS letters》2001,509(2):174-176
4,5-Diaminofluorescein, a fluorescence indicator for NO, was applied to detect the release of NO from plant cells. NO production was increased within 3 min when plant cell cultures (Arabidopsis, parsley, and tobacco) were treated by cytokinin and was dose-dependent and signal-specific in that other plant hormones and inactive cytokinin analog were not effective in stimulating of NO release. The response was quenched by addition of 2-(aminoethyl)-2-thiopseudourea, an inhibitor of the animal NO synthase, and by addition of an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide. These results imply that NO may act in cytokinin signal transduction.  相似文献   

16.
The role of nitric oxide (NO) in thermotolerance acquired by heat acclimation (38°C) was investigated. Results showed that 38°C acclimation, on the one hand, obviously reduced hydrogen peroxide (H2O2) and MDA contents and ion leakage degree in rice leaves; however, on the other hand, it increased the survival of rice (Oryza sativa L.) seedlings under 50°C heat stress. Application of nitric oxide donor, sodium nitroprusside (SNP), prior to 38°C acclimation dramatically increased the acquired thermotolerance. To elucidate the role of endogenous NO in acquired thermotolerance, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO, a specific NO scavenger) was used (scavengers are used to control the level of both exogenous and endogenous NO). Results showed that PTIO pretreatment resulted in the elimination of acquired thermotolerance induced by 38°C acclimation in rice seedlings. Nitric oxide (NO) release measurement indicated that there was indeed an abrupt elevation in the NO content in 40 min after 38°C acclimation, proving the involvement of NO in acquired thermotolerance inducement in rice seedling.  相似文献   

17.
HRP catalyzes the oxidation of N omega-hydroxy-L-arginine (NOHA) by H2O2 with formation of citrulline and NO2- with initial rates of about 0.7 and 0.2 nmol per nmol HRP per min. In the same manner, cytochromes P450 from rat liver microsomes catalyze the oxidation of NOHA to citrulline and NO2- by cumylhydroperoxide. Inhibitors of these hemeproteins (N3- and CN- for HRP and miconazole for P450) strongly inhibit both citrulline and NO2- formation. Rates of NOHA oxidation by these hemeproteins markedly decrease with time presumably because of their denaturation by nitrogen oxides and of the formation of hemeprotein-iron-NO complexes. These results suggest that NO (and other nitrogen oxides) could be formed from oxidation of NOHA by other enzymes than NO-synthases.  相似文献   

18.
19.
Sleep homeostasis is the process by which recovery sleep is generated by prolonged wakefulness. The molecular mechanisms underlying this important phenomenon are poorly understood. Here, we assessed the role of the intercellular gaseous signaling agent NO in sleep homeostasis. We measured the concentration of nitrite and nitrate, indicative of NO production, in the basal forebrain (BF) of rats during sleep deprivation (SD), and found the level increased by 100 +/- 51%. To test whether an increase in NO production might play a causal role in recovery sleep, we administered compounds into the BF that increase or decrease concentrations of NO. Infusion of either a NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, or a NO synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), completely abolished non-rapid eye movement (NREM) recovery sleep. Infusion of a NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2diolate (DETA/NO), produced an increase in NREM that closely resembled NREM recovery after prolonged wakefulness. The effects of inhibition of NO synthesis and the pharmacological induction of sleep were effective only in the BF area. Indicators of energy metabolism, adenosine, lactate and pyruvate increased during prolonged wakefulness and DETA/NO infusion, whereas L-NAME infusion during SD prevented the increases. We conclude that an increase in NO production in the BF is a causal event in the induction of recovery sleep.  相似文献   

20.
NO signalling in cytokinin-induced programmed cell death   总被引:6,自引:0,他引:6  
Cell death can be induced by cytokinin 6-benzylaminopurine (BA) at high dosage in suspension-cultured Arabidopsis cells. Herein, we provide evidence that BA induces nitric oxide (NO) synthesis in a dose-dependent manner. A reduction in cell death can be observed when the cytokinin is supplemented with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or the nitric oxide synthase (NOS) inhibitors: 2-aminoethyl-isothiourea (AET) and NG.-monomethyl- l -arginine ( l -NMMA), which suggests that NO is produced via a NOS and is a signalling component of this form of programmed cell death. In BA-treated cells, mitochondrial functionality is altered via inhibition of respiration. This inhibition can be prevented by addition of either cPTIO or AET implying that NO acts at the mitochondrial level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号