首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
土壤盐碱化严重制约农业发展并影响生态环境.丛枝菌根真菌(AMF)与植物形成的共生体作为生态系统的有机组成部分,因其形成的广泛性,可增强植物抗盐碱胁迫的能力,具有不可忽视的生态调节作用.本文从盐胁迫对AMF发育的影响、盐胁迫下AMF对植物生长的影响、AMF增强植物耐盐性的内在机制等3个方面阐述了丛枝菌根真菌-植物共生体耐盐性的机制.并结合当前研究存在的难题以及发展趋势对今后本领域的研究方向做出展望.  相似文献   

2.
丛枝菌根真菌在土壤氮素循环中的作用   总被引:12,自引:0,他引:12  
陈永亮  陈保冬  刘蕾  胡亚军  徐天乐  张莘 《生态学报》2014,34(17):4807-4815
作为植物需求量最大的营养元素,氮素是陆地生态系统初级生产力的主要限制因子。丛枝菌根真菌能与地球上80%以上的陆生植物形成菌根共生体,帮助宿主植物吸收土壤中的P、N等矿质养分。目前,丛枝菌根真菌与氮素循环相关研究侧重于真菌对氮素的吸收形态以及共生体中氮的传输代谢机制,却忽略了丛枝菌根真菌在固氮过程、矿化与吸收过程、硝化过程、反硝化过程以及氮素淋洗过程等土壤氮素循环过程中所起到的潜在作用,并且越来越多的证据也表明丛枝菌根真菌是影响土壤氮素循环过程的重要因子。总结了丛枝菌根真菌可利用的氮素形态及真菌的氮代谢转运相关基因的研究现状;重点分析了丛枝菌根真菌在调控土壤氮素循环过程中的潜在作用以及在生态系统中的重要生态学意义,同时提出了丛枝菌根真菌在土壤氮素循环过程中一些需要深入研究的问题。  相似文献   

3.
丛枝菌根共生的信号转导及其相关基因   总被引:1,自引:0,他引:1  
大多数植物根系能够与某些真菌形成相互依存、互惠互利的菌根共生关系.植物在提供给丛枝菌根真菌赖以生存的碳源的同时,也通过真菌从土壤中吸取矿质营养.丛枝菌根能够促进植物生长,提高植物抗逆性和抵御外界不良环境,对提高农林业生产效率、增强生态系统稳定性及维护生物多样性具有重要的意义.菌根的形成是一系列信号分子交换传递和共生相关基因表达调控的结果.在信号转导途径中,共生受体样蛋白激酶、离子通道和钙/钙调依赖性蛋白激酶基因的表达对菌根的形成是不可或缺的.就丛枝菌根共生的信号转导机制以及信号途径中3个必需基因的结构、功能及研究现状进行了综述.  相似文献   

4.
丛枝菌根共生关系的信号机制研究进展   总被引:3,自引:3,他引:0  
刘炜  冯虎元 《西北植物学报》2006,26(10):2173-2178
在植物与微生物的共生体中,最广泛的互惠共生体就是丛枝菌根.真菌在植物根系形成菌根后,菌丝通过根的皮层细胞获取植物提供的碳源,同时将矿物营养和水从土壤转运到皮层细胞,这种共生过程的研究在生物多样性的保护、陆生植物的起源与演化、退化生态系统的修复与重建以及农业、林业和园艺业的应用具有重要的意义.近年来丛枝菌根真菌与植物根系建立共生关系的信号传导途径和作用机制备受关注,也取得了突破性的进展.本文对丛枝菌根真菌与植物根系在共生关系形成、营养交换以及防御方面的分子信号和细胞方面的研究进展进行综述,并对发展前景作以展望.  相似文献   

5.
土壤中存在着大量不同种类的微生物资源,土壤微生物能够与自然界中的大多数植物密切合作,其中丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)起着十分重要的作用。近年来,对于AMF的研究越来越多。AMF是存在于土壤中的重要真菌之一,是土壤中的菌根真菌菌丝与高等植物营养根系形成的一种联合体。AMF可以与陆地上90%左右的植物根系形成共生体,通过在植物根系形成重要的“丛枝菌根”结构而为植物提供更多的养分。为了了解接种AMF对作物生长过程中耐受一些非生物胁迫(如干旱、极端温度、重金属污染、盐分、不利的土壤pH变化等)性能方面的影响,基于之前接种AMF对养分胁迫下玉米生长影响的研究,在扩大作物品种的基础上,通过查阅大量文献,结合试验研究及对前人和近年来关于AMF的一些最新研究进展,获得了具有实践性意义的新发现:AMF与植物共生有助于植物生长,可以改善植物的营养状况,并且可以保护植物免受各种非生物环境胁迫的影响。由此可以得出结论:AMF通过各种机制改善植物生长状况,提高作物抗逆性,为作物增产、农民增收创造了福利,并且避免了由于肥料过量施用导致的一些污染环境问题。本文主要综述了接种AMF在各种非生物环境胁迫(干旱、极端温度、重金属污染、盐分、不利的土壤pH变化等)条件下对植株生长和发育的有利影响,并对目前存在的不足和今后研究的重点提出几点建议。  相似文献   

6.
丛枝菌根真菌提高盐胁迫植物抗氧化机制的研究进展   总被引:3,自引:0,他引:3  
孙思淼  常伟  宋福强 《应用生态学报》2020,31(10):3589-3596
土地盐渍化是在自然环境和人为活动的双重作用下形成的全球性的重要生态问题,其会对植物造成渗透失衡、离子胁迫、氧化损伤等危害,导致植物生长缓慢、生物量减少甚至是绝产。丛枝菌根真菌(AMF)是一种普遍存在于土壤中的有益微生物,能够与大多数植物根系形成共生关系,其共生关系在多种逆境生态系统中均具有重要生态意义。AMF-植物共生体具有高效抗氧化系统,能够提高植物在盐胁迫下的抗氧化反应进而增强耐盐性。本文从氧化损伤、渗透调节、抗氧化机制和生物活性分子等角度,系统地阐述了丛枝菌根真菌提高植物抗氧化机制的研究进展,并提出了研究展望,以期为利用菌根生物技术提高植物耐盐性提供理论参考。  相似文献   

7.
中国菌根研究60年:过去、现在和将来   总被引:3,自引:0,他引:3  
菌根(真菌根系)存在于大约90%的植物中,在促进土壤结构、植物养分与生长、元素生物地球化学循环和陆地生态系统结构与功能等方面具有重要作用.过去60年尤其是近30年,中国菌根研究成果举世瞩目,如共鉴定出20种新种与120余种新记录种丛枝菌根真菌、30种新种与800余种新记录种外生菌根真菌以及10种新种与100余种新记录种兰花菌根真菌.同时,在菌根真菌菌种丰富度与遗传结构、菌种生态分布与植物种群,植物养分摄取与生长、植物修复与土地复垦、植物抗病性和与其他土壤微生物相互作用、菌根植物酶学性质及大气CO2和O3浓度升高对丛枝菌根多样性的影响等方面也取得重大进展.本文选介中国菌根主要研究成就,进行研究前景展望,以促进我国菌根研究的深入开展.  相似文献   

8.
丛枝菌根是由一类土壤中古老的丛枝菌根真菌与植物根系形成的互利互惠共生体。通过共生作用丛枝菌根真菌帮助宿主植物提高水和矿质营养(特别是磷)的吸收效率。作为回报,大约20%的光合作用产物被转移到丛枝菌根真菌中,供其完成自身的生活史。丛枝菌根形成的过程中,需要植物与丛枝菌根真菌之间进行一系列信号分子的识别、交换以及信号转导作用,这一过程由一系列植物和菌根真菌的基因控制。首先,植物会分泌一种植物激素——独角金内酯来诱导菌根真菌加速分支,而菌根真菌也会分泌脂质几丁寡糖促进植物与其形成菌根。加速分支的菌根真菌接触到植物根部以后,会附着在植物根的表皮并形成附着胞,通过附着胞穿透植物根的表皮,最后进入维管组织附近的皮层细胞并在其中不断进行二叉分支,形成特有的丛枝结构。通过对模式植物共生现象的研究,已经发现很多植物基因参与到共生形成的信号转导过程中,包括早期植物反应的基因、菌根与根瘤共生共同需要的转导因子以及菌根特异的信号分子等。本文对菌根的形成过程及信号转导途径进行详细的介绍,为人们深入研究菌根关系提供参考。  相似文献   

9.
丛枝菌根共生体的氮代谢运输及其生态作用   总被引:4,自引:0,他引:4  
丛枝菌根真菌能与80%的陆生维管植物形成互惠共生关系,共生体的存在对促进植物营养吸收和提高抗逆性具有重要意义.丛枝菌根真菌从宿主植物获取其光合产物碳水化合物的同时,通过外生菌丝吸收各种氮源,有效增强了宿主植物对氮素的吸收,以及氮在植物居群和群落水平上的交流,改善了植物营养代谢,增强了植物应对外界环境胁迫的能力.而共生体对氮的吸收、转运,以及氮从真菌到宿主植物的传输、代谢机制至今仍有许多问题亟待解决.本文综述了当前丛枝菌根共生体中氮传输代谢的主要机制,以及碳、磷对共生体氮传输代谢的影响;从群落和生态系统水平,简要阐述了丛枝菌根真菌在植物中氮分配的作用和对宿主植物的生态学意义,并提出共生体中氮代谢的一些需要深入研究的问题.  相似文献   

10.
丛枝菌根真菌促进外来植物豚草的生长 丛枝菌根真菌(AMF)可以通过其菌丝增加寄主植物对养分的吸收,从而促进植物生长。丛枝菌根真菌一直与大多数外来植物的成功入侵联系在一起。然而,有关丛枝菌根真菌如何影响植物入侵成功的机制仍然有待研究。豚草(Ambrosia artemisiifolia)是一种外来的菌根植物。通过长期田间实验,我们研究了种间竞争对豚草和狗尾草(Setaria viridis)根系丛枝菌根真菌多样性和组成的影响。此外,在温室实验中探究了摩西球囊霉(Funneliformis mosseae)对这两种植物生长的影响。研究结果表明,豚草入侵改变了本地植物狗尾草根系丛枝菌根真菌的多样性。另外,豚草根系中摩西球囊霉的相对多度显著高于狗尾草根系中。在田间和温室实验中均发现外来种豚草的丛枝菌根真菌侵染率高于本地种狗尾草。温室实验结果表明,丛枝菌根真菌通过影响豚草的光合能力以及磷和钾的吸收而促进豚草生长。这些研究结果揭示了丛枝菌根真菌和豚草成功入侵之间的重要关系。  相似文献   

11.
丛枝菌根(AM)真菌是自然生态系统中分布最为广泛的真菌之一,在自然界物质循环和能量流动中发挥着重要作用。经过长期的协同进化,AM真菌和宿主植物之间形成了完美的互惠互利的共生关系,而真菌的脂类代谢可能是揭示共生秘密的关键所在。本文综述了AM真菌脂类代谢在共生关系建立和维持中关键作用的最新研究进展,重点探讨了AM真菌脂类代谢对共生信号调控的响应和反馈机制,主要包括:AM真菌脂类存储和释放对共生和非共生状态的响应,以及脂类代谢产物变化与共生营养传递之间的关系;脂类分解过程在共生建立初期对信号分子调控发生的响应,以及相应的物质转化和能量代谢;菌根共生互惠互利关系维持中,真菌脂类代谢与信号分子交流通道的相互渗透和影响。本文对于理解菌根共生机制,促进菌根在生产中的应用具有促进作用。  相似文献   

12.
丛枝菌根共生体中碳、氮代谢及其相互关系   总被引:1,自引:1,他引:0  
丛枝菌根共生体(arbuscular mycorrhiza, AM)是丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与宿主植物之间形成的互惠共生形式.共生体中的碳、氮交换和代谢影响着宿主植物和共生真菌之间的营养平衡和资源重新分配,在物质和能量循环中发挥着重要作用.宿主植物光合固定的碳输送到真菌内,并且分解和释放真菌所需的生命物质和能量,包括促进孢子萌发、菌丝生长和提高氮等营养元素的吸收;而菌根真菌利用宿主植物提供的碳骨架和能量,发生氮的转化和运输,最终传递给宿主植物供其利用.本文综述了丛枝菌根共生体中碳、氮传输和代谢的主要模式,碳、氮的交互影响和调控机制,以促进丛枝菌根在可持续农业和生态系统中的应用.  相似文献   

13.
There is increasing and widespread interest in the maintenance of soil quality and remediation strategies for management of soils contaminated with organic pollutants and trace metals or metalloids. There is also a growing body of evidence that arbuscular mycorrhizal (AM) fungi can exert protective effects on host plants under conditions of soil metal contamination. Research has focused on the mechanisms involved and has raised the prospect of utilizing the mutualistic association in soil re-vegetation programmes. In this short paper we briefly review this research, summarize some recent work and highlight some new data which indicate that the alleviation of metal phytotoxicity, particularly Zn toxicity, by arbuscular mycorrhiza may occur by both direct and indirect mechanisms. Binding of metals in mycorrhizal structures and immobilization of metals in the mycorrhizosphere may contribute to the direct effects. Indirect effects may include the mycorrhizal contribution to balanced plant mineral nutrition, especially P nutrition, leading to increased plant growth and enhanced metal tolerance. Further research on the potential application of arbuscular mycorrhiza in the bioremediation or management of metal-contaminated soils is also discussed.  相似文献   

14.
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree mycorrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are characterised by thin forest floors and low soil C : N ratio, were invaded to a greater extent by non‐native invasive species than ectomycorrhizal (ECM) dominant forests. Understory native species cover and richness had no strong associations with AM tree dominance. We also found no difference in the mycorrhizal type composition of understory invaders between AM and ECM dominant forests. Our results indicate that dominant forest tree mycorrhizal type is closely linked with understory invasions. The increased invader abundance in AM dominant forests can further facilitate nutrient cycling, leading to the alteration of ecosystem structure and functions.  相似文献   

15.
A pot experiment was conducted to investigate the uptake of Zn from experimentally contaminated calcareous soil of low nutrient status by maize inoculated with the arbuscular mycorrhizal (AM) fungus Glomus caledonium. EDTA was applied to the soil to mobilize Zn and thus maximize plant Zn uptake. The highest plant dry matter (DM) yields were obtained with a moderate Zn addition level of 300 mg kg?1. Plant growth was enhanced by mycorrhizal colonization when no Zn was added and under the highest Zn addition level of 600 mg kg?1, while application of EDTA to the soil generally inhibited plant growth. EDTA application also increased plant Zn concentration, and Zn accumulation in the roots increased with increasing EDTA addition level. The effects of inoculation with Gcaledonium on plant Zn uptake varied with Zn addition level. When no Zn was added, Zn translocation from roots to shoots was enhanced by mycorrhizal colonization. In contrast, when Zn was added to the soil, mycorrhizal colonization resulted in lower shoot Zn concentrations in mycorrhizal plants. The P nutrition of the maize was greatly affected by AM inoculation, with mycorrhizal plants showing higher P concentrations and P uptake. The results indicate that application of EDTA mobilized soil Zn, leading to increased Zn accumulation by the roots and subsequent plant toxicity and growth inhibition. Mycorrhizal colonization alleviated both Zn deficiency and Zn contamination, and also increased host plant growth by influencing mineral nutrition. However, neither EDTA application nor arbuscular mycorrhiza stimulated Zn translocation from roots to shoots or metal phytoextraction under the experimental conditions. The results are discussed in relation to the environmental risk associated with chelate-enhanced phytoextraction and the potential role of arbuscular mycorrhiza in soil remediation.  相似文献   

16.
Advanced scientific knowledge on arbuscular mycorrhizal symbioses recently enhanced potential for implementation of mycorrhizal biotechnology in horticulture and agriculture plant production, landscaping, phytoremediation and other segments of the plant market. The advances consist in significant findings regarding:—new molecular detection tools for tracing inoculated fungi in the field;—the coexistence mechanisms of various fungi in the single root system;—new knowledge on in vitro physiology of the AM fungi grown in root organ cultures;—mechanisms of synergistic interactions with other microbes like PGPR or saprotrophic fungi; discovery of mycorrhiza supportive compounds such as strigolactones. Scientific knowledge has been followed by technological developments like novel formulations for liquid applications or seed coating, mycorrhiza stimulating compounds or new application modes. Still the missing components of biotechnology are appropriate, cheap, highly reproducible and effective methods for inocula purity testing and quality control. Also there is a weak traceability of the origin of the mycorrhizal fungi strains used in commercial inocula. Numerous poor quality products can still be found on the markets claiming effective formation mycorrhiza which have very low capacity to do so. These products usually rely in their effects on plant growth not on support of host plants via formation of effective mycorrhizal symbiosis but on fertilizing compounds added to products. There is growing number of enterprises producing mycorrhiza based inocula recently not only in developed world but increasingly in emerging markets. Also collaboration between private sector and scientific community has an improving trend as the development of private sector can fuel further research activities. Last but not least there is apparent growing pull of the market and increasing tendency of reduction of agrochemical inputs and employment of alternative strategies in planting and plant production. These circumstances support further developments of mycorrhizal inocula production and applications and maturation of the industry.  相似文献   

17.
丛枝菌根对喜树幼苗生长和氮、磷吸收的影响   总被引:12,自引:0,他引:12       下载免费PDF全文
 喜树(Camptotheca acuminata)是我国特有的多年生亚热带落叶阔叶树种,因其次生代谢产物喜树碱具有良好的 抗肿瘤活性而受到人们的广泛关注。该文通过温室盆栽接种试验,观察了2属6种丛枝菌根真菌即蜜色无梗囊霉 (Acaulospora mellea)、光壁无梗囊霉 (A. laevis)、木薯球囊霉(Glomus manihot)、地表球囊霉(G. versiforme)、 幼套球囊霉(G. etunicatum)和透光球囊霉(G. diaphanum)对喜树幼苗生长和氮、 磷养分吸收的 影响。结果表明,丛枝菌根的形成对喜树幼苗的生长以及氮、磷营养的吸收均有影响。从生物量看,除幼套球囊 霉和光壁无梗囊霉侵染形成的丛枝菌根喜树幼苗与无菌根幼苗(CK)差异不显著外,其余菌 根幼苗的生物量均明 显大于无菌根幼苗,透光球囊霉和蜜色无梗囊霉菌根幼苗尤为突出,分别达到无菌根幼苗的1.9和1.4倍。丛枝菌 根的形成似乎不利于喜树幼苗的氮素营养吸收,并且主要体现在叶片的氮含量上。相反,丛枝菌根形成总体上促 进喜树幼苗对磷素营养的吸收,并且主要体现在根的磷含量上。与无菌根幼苗比,所有菌根幼苗根的氮、磷分配 比例增加,而叶片的氮、磷分配比例减少。  相似文献   

18.
徐辉  张捷 《植物研究》2007,27(5):636-640
菌根是自然界中一种极为普遍和重要的共生现象,其中分布最为广泛的菌根类型就是丛枝菌根,可以增强植物从土壤中获取水分的能力,改善植物根系对磷、镉等矿质元素及养分的吸收,从而促进植物的生长。本文综述了丛枝菌根真菌对植物生长影响的概况。有关丛枝菌根真菌对植物水分和矿质营养的利用,尤其是磷素营养的研究较为深入,而对植物光合特性的研究较少,这些研究工作为深入理解菌根真菌与植物的相互关系提供基础资料。  相似文献   

19.
植物菌根共生磷酸盐转运蛋白   总被引:1,自引:0,他引:1  
大多数植物能和丛枝菌根(arbuscular mycorrhiza, AM)真菌形成菌根共生体。AM能够促进植物对土壤中矿质营养的吸收,尤其是磷的吸收。磷的吸收和转运由磷酸盐转运蛋白介导。总结了植物AM磷酸盐转运蛋白及其结构特征,分析其分类及系统进化,并综述了AM磷酸盐转运蛋白介导的磷的吸收和转运过程及其基因的表达调控。植物AM磷酸盐转运蛋白属于Pht1家族成员,它不仅对磷的吸收和转运是必需的,而且对AM共生也至关重要,为进一步了解菌根形成的分子机理及信号转导途径提供了理论基础。  相似文献   

20.
The mycorrhizal associations established between plants and fungi have multiple effects on plant growth, directly affecting stress tolerance. This work aimed to explore arbuscular mycorrhizal (AM) effects on carbon and nitrogen relationships of Aster tripolium L. and consequently on its flooding tolerance. Mycorrhizal and non-mycorrhizal juvenile plants were submitted to non-flooding and tidal flooding conditions for 56 d. Tidal flooding reduced biomass, but the presence of mycorrhiza had an ameliorating effect. The AM symbioses seem to have, like flooding, a stressful effect on A. tripolium at an early stage of plant development. However, once the plant was established, an improvement of growth performance of plants with mycorrhiza under flooding conditions was observed. The better tolerance of AM plants to flooding was mediated through an improvement of the osmotic adjustment of the plant tissues (higher concentrations of soluble sugars and proline) and through the increment of nitrogen acquisition in tidal-flooded plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号