首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blake  L.  Goulding  K.W.T. 《Plant and Soil》2002,240(2):235-251
The effects of acidification on the soil chemistry and plant availability of the metals Pb, Cd, Zn, Cu, Mn and Ni in new and archived soil and plant samples taken from the >100-year-old experiments on natural woodland regeneration (Geescroft and Broadbalk Wildernesses) and a hay meadow (Park Grass) at Rothamsted Experimental Station are examined. We measured a significant input of metals from atmospheric deposition, enhanced under woodland by 33% (Ni) to 259% (Zn); Pb deposition was greatly influenced by vehicle emissions and the introduction of Pb in petrol. The build up of metals by long-term deposition was influenced by acidification, mobilization and leaching, but leaching, generally, only occurred in soils at pH<4. Mn and Cd were most sensitive to soil acidity with effective mobilization occurring at pH 6.0–5.5 (0.01 M CaCl2), followed by Zn, Ni and Cu at pH 5.5–5.0. Pb was not mobilized until pH<4.5. Acidification to pH 4 mobilized 60–90% of total soil Cd but this was adsorbed onto ion exchange surfaces and/or complexed with soil organic matter. This buffering effect of ion exchange surfaces and organic matter in soils down to pH 4 was generally reflected by all the metals investigated. For grassland the maximum accumulation of metals in herbage generally corresponded to a soil pH of 4.0. For woodland the concentration of Pb, Mn and Cd in oak saplings (Quercus robur) was 3-, 4- and 6-fold larger at pH 4 than at pH 7. Mature Oak trees contained 10 times more Mn, 4 times more Ni and 3 times more Cd in their leaves at pH 4 than at pH 7. At pH values <4.0 on grassland the metal content in herbage declined. Only for Mn and Zn did this reflect a decline in the plant available soil content attributed to long-term acid weathering and leaching. The chief cause was a long-term decline in plant species richness and the increased dominance of two acid-tolerant, metal-excluder species  相似文献   

2.
The distribution of labile Cd and Zn in two contrasting soils was investigated using isotopic exchange techniques and chemical extraction procedures. A sewage sludge amended soil from Great Billings (Northampton, UK) and an unamended soil of the Countesswells Association obtained locally (Aberdeen, UK) were used. 114Cd and 67Zn isotopes were added to a water suspension of each soil and the labile metal pool (E-value) determined from the isotope dilution. Samples were obtained at 13 time points from 1h to 50 days. For the sewage sludge amended soil, 29 g Cd g–1 (86% of total) and 806 g Zn g–1 (65% of total) were labile and for the Countesswells soil the value was 8.6 g Zn g–1 (13% of total); limits of detection prevented a Cd E-value from being measured in this soil. The size of the labile metal pool was also measured by growing plants for 90 days and determining the isotopic content of the plant tissue (L-value). Thlaspi caerulescensJ. & C. Presl (alpine penny cress), a hyperaccumulator of Zn and Cd, Taraxacum officinale Weber (dandelion) and Hordeum vulgare L. (spring barley) were used. L-values were similar across species and lower than the E-values. On average the L-values were 23±0.8 g Cd g–1 and 725±14 g Zn g–1 for the Great Billings soil and 0.29±0.16 g Cd g–1 and 7.3±0.3 g Zn g–1 for the Countesswells soil. The extractable metal content of the soils was also quantified by extraction using 0.1 M NaNO3, 0.01 M CaCl2, 0.5 M NaOH, 0.43 M CH3COOH and 0.05 M EDTA at pH 7.0. Between 1.3 and 68% of the total Cd and between 1 and 50% of the total Zn in the Great Billings soil was extracted by these chemicals. For the Countesswells soil, between 6 and 83% of the total Cd and between 0.1 and 7% of the total Zn was extracted. 0.05 M EDTA and 0.43 M CH3COOH yielded the greatest concentrations for both soils but these were less than the isotopic estimates. On the whole, E-values were numerically closer to the L-values than the chemical extraction values. The use of isotopic exchange provides an alternative estimate of the labile metal pool within soils compared to existing chemical extraction procedures. No evidence was obtained that T. caerulescens is able to access metal within the soil not freely available to the other plants species. This has implications for long term remediation strategies using hyperaccumulating plant species, which are unlikely to have any impact on non-labile Cd and Zn in contaminated soil.  相似文献   

3.
The objective of the investigation was to evaluate the effect of immobilizing substances and NaCl salinity on the availability of heavy metals: Zn, Cd, Cu, Ni, and Pb to wheat (Triticum aestivum L.). In greenhouse pot experiment, a sewage sludge amended soil was treated with the following immobilizing substances: three clay minerals (Na-bentonite, Ca-bentonite and zeolite), iron oxides (goethite and hematite), and phosphate fertilizers (superphosphate and Novaphos). The pots were planted with wheat and were irrigated either with deionized or saline water containing 1600 mg L?1 NaCl. Wheat was harvested two times for shoot metal concentrations and biomass measurements. Metal species in soil solution were estimated using the software MINEQL+.

The addition of metal immobilizing substances to the soil significantly decreased metal availability to wheat. The largest reduction in metal bioavailability was found for bentonites. The irrigation with saline water (1600 mg L?1 NaCl) resulted in a significant increase in metal chloride species (MCl+ and MCl2 0). The highest metal complexation with Cl occurred for Cd, which was about 53% of its total soil solution concentration. The total concentration of Cd (CdT) in soil solution increased by 1.6–2.8-fold due to saline water. The NaCl salinity caused a significant increase in uptake and shoot concentration of Cd for two harvests and small but significant increase in shoot Pb concentration for the second harvest. It was concluded that the use of bentonites is the most promising for the reduction of heavy metal availability to plants. Saline water containing 1600 mg L? 1 NaCl increased the availability of Cd and Pb to wheat and decreased the efficiency of bentonites to immobilize soluble Cd.  相似文献   


4.
Field survey, hydroponic culture, and pot experiments were carried out to examine and characterize cadmium (Cd) and zinc (Zn) uptake and accumulation by Sedum jinianum, a plant species native to China. Shoot Cd and Zn concentrations in S. jinianum growing on a lead/Zn mine area reached 103–478 and 4165–8349 mg kg?1 (DM), respectively. The shoot Cd concentration increased with the increasing Cd supply, peaking at 5083 mg kg?1 (DM) when grown in nutrient at a concentration of 100 μmol L?1 for 32 d, and decreased as the solution concentration increased from 200 to 400 μmol L?1. The shoot-to-root ratio of plant Cd concentrations was > 1 when grown in solution Cd concentrations ≤ 200 μmol L?1. Foliar, stem, and root Zn concentrations increased linearly with the increasing Zn level from 1 to 9600 μmol L?1. The Zn concentrations in various plant parts decreased in the order roots > stem > leaves, with maximum concentrations of 19.3, 33.8, and 46.1 g kg?1 (DM), respectively, when plants were grown at 9600 μmol Zn L?1 for 32 d. Shoot Cd concentrations reached 16.4 and 79.8 mg kg?1 (DM) when plants were grown in the pots of soil with Cd levels of 2.4 mg kg?1 and 9.2 mg kg?1, respectively. At soil Zn levels of 619 and 4082 mg kg?1, shoot Zn concentrations reached 1560 and 15,558 mg kg?1 (DM), respectively. The results indicate that S. jinianum is a Cd hyperaccumulator with a high capacity to accumulate Zn in the shoots.  相似文献   

5.
Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.  相似文献   

6.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

7.
In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment “S. plumbizincicola intercropped with maize” was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha?1 gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.  相似文献   

8.
Heavy metal phytoextraction is a soil remediation technique which implies the optimal use of plants to remove contamination from soil. Plants must thus be tolerant to heavy metals, adapted to soil and climate characteristics and able to take up large amounts of heavy metals. Their roots must also fit the spatial distribution of pollution. Their different root systems allow plants to adapt to their environment and be more or less efficient in element uptake. To assess the impact of the root system on phytoextraction efficiency in the field, we have studied the uptake and root systems (root length and root size) of various high biomass plants (Brassica juncea, Nicotiana tabacum, Zea mays and Salix viminalis) and one hyperaccumulator (Thlaspi caerulescens) grown in a Zn, Cu and Cd contaminated soil and compared them with total heavy metal distribution in the soil. Changes from year to year have been studied for an annual (Zea mays) and a perennial plant (Salix viminalis) to assess the impact of the climate on root systems and the evolution of efficiency with time and growth. In spite of a small biomass, T. caerulescens was the most efficient plant for Cd and Zn removal because of very high concentrations in the shoots. The second most efficient were plants combining high metal concentrations and high biomass (willows for Cd and Zn and tobacco for Cu and Cd). A large cumulative root density/aboveground biomass ratio (LA/B), together with a relative larger proportion of fine roots compared to other plants seemed to be additional favourable characteristics for increased heavy metal uptake by T. caerulescens. In general, for all plants correlations were found between L A/B and heavy metal concentrations in shoots (r=0.758***, r=0.594***, r=0.798*** (P<0.001) for Cd, Cu and Zn concentrations resp.). Differences between years were significant because of variations in climatic conditions for annual plants or because of growth for perennial plants. The plants exhibited also different root distributions along the soil profile: T. caerulescens had a shallow root system and was thus best suited for shallow contamination (0.2 m) whereas maize and willows were the most efficient in colonising the soil at depth and thus more applicable for deep contamination (0.7 m). In the field situation, no plant was able to fit the contamination properly due to heterogeneity in soil contamination. This points out to the importance and the difficulty of choosing plant species according to depth and heterogeneity of localisation of the pollution.  相似文献   

9.
Chemical fractionation methods may be capable of providing an inexpensive estimate of contaminant bioavailability and risk in smelter-contaminated soil. In this study, the relationship between metal fractionation and methods used to estimate bioavailability of these metal contaminants in soil was evaluated. The Potentially BioAvailable Sequential Extraction (PBASE) was used for Cd, Pb, and Zn fractionation in 12 soils contaminated from Pb and Zn mining and smelting activities. The PBASE procedure is a four-step sequential extraction: extraction 1 (E1) is 0.5 M Ca(NO3)2, E2 is 1.0 M NaOAc, E3 is 0.1 M Na2EDTA, and E4 is 4 M HNO3. Metal bioavailability for two human exposure pathways, plant uptake (phytoavailability) and incidental ingestion (gastrointestinal, Gl, availability), was estimated using a lettuce (Lactuca sativa L.) bioassay and the in vitro-Gl Physiologically Based Extraction Test(PBET). Metal in the PBASE E1 fraction was correlated with lettuce Cd (P < 0.001) and Zn (P < 0.05) and was the best predictor of Cd and Zn phytoavailability. Only total metal content or the sum of all PBASE fractions, ΣE1–4, were correlated (P < 0.001) with PBET gastric phase for Pb. The sum of the first two PBASE fractions, ΣE1–2, was strongly correlated (P < 0.001) with Pb extracted by the PBET intestinal phase. The PBASE extraction method can provide information on Cd and Zn phytoavailability and Gl availability of Pb in smelter-contaminated soils.  相似文献   

10.
A variety of plants growing on metalliferous soils accumulate metals in their harvestable parts and have the potential to be used for phytoremediation of heavy metal polluted land. There is increasing evidence that rhizosphere bacteria contribute to the metal extraction process, but the mechanisms of this plant–microbe interaction are not yet understood. In this study ten rhizosphere isolates obtained from heavy metal accumulating willows affiliating with Pseudomonas, Janthinobacterium, Serratia, Flavobacterium, Streptomyces and Agromyces were analysed for their effect on plant growth, Zn and Cd uptake. In plate assays Zn, Cd and Pb resistances and the ability of the bacteria to produce indole-3-acetic acid (IAA), 1-amino-cyclopropane-1-carboxylic acid deaminase (ACC deaminase) and siderophores were determined. The isolates showed resistance to high Zn concentrations, indicating an adaptation to high concentrations of mobile Zn in the rhizosphere of Salix caprea. Four siderophore producers, two IAA producers and one strain producing both siderophores and IAA were identified. None of the analysed strains produced ACC deaminase. Metal mobilization by bacterial metabolites was assessed by extracting Zn and Cd from soil with supernatants of liquid cultures. Strain Agromyces AR33 almost doubled Zn and Cd extractability, probably by the relase of Zn and Cd specific ligands. The remaining strains, immobilized both metals. When Salix caprea plantlets were grown in γ-sterilized, Zn/Cd/Pb contaminated soil and inoculated with the Zn resistant isolates, Streptomyces AR17 enhanced Zn and Cd uptake. Agromyces AR33 tendentiously promoted plant growth and thereby increased the total amount of Zn and Cd extracted from soil. The IAA producing strains did not affect plant growth, and the siderophore producers did not enhance Zn and Cd accumulation. Apparently other mechanisms than the production of IAA, ACC deaminase and siderophores were involved in the observed plant–microbe interactions.  相似文献   

11.
Dissolved organic matter in poultry litter could contribute organic ligands to form complexes with heavy metals in soil. The soluble complexes with heavy metals can be transported downward and possibly deteriorate groundwater quality. To better understand metal mobilization by soluble organic ligands in poultry litter, soil columns were employed to investigate the movement of zinc (Zn), cadmium (Cd), and lead (Pb). Uncontaminated soil was amended with Zn, Cd, and Pb at rates of 400, 8, and 200 mg kg ? 1 soil, respectively. Glass tubes, 4.9-cm-diameter and 40-cm-long, were packed with either natural or metal-amended soil. The resulting 20-cm-long column of soils had bulk density of about 1.58 g cm ? 3 . Columns repacked with natural or amended soil were leached with distilled water, 0.01 M EDTA, 0.01 M CaCl 2 , or poultry litter extract (PLE) solutions. Low amounts of Zn, Cd, and Pb were leached from natural soil with the solutions. Leaching of Zn, Cd, or Pb was negligible with distilled water. In the metal-amended soil, EDTA solubilized more Zn, Cd, and Pb than CaCl 2 and PLE. The breakthrough curves of Zn and Pb in the PLE and CaCl 2 were similar, indicating they have similar ability to displace Zn and Pb from soils. Compared with Zn and Cd the PLE had a small ability to solubilize Pb from metal-amended soil. Thus, the application of poultry litter on metal-contaminated soils might enhance the mobility of Zn and Cd.  相似文献   

12.
ABSTRACT

The rhizosphere soils of two durum wheat (Triticum turgidum var. durum L.) cultivars Kyle and Areola grown in two selected soils of southern Saskatchewan were collected both at 2-week and 7-week plant growth stages. The cadmium availability index (CAI), determined as M NH4CI-extractable Cd, pH and the distribution of the particulate- bound Cd species of the soils were carried out and the data were discussed in comparison with those of the corresponding bulk soil. At the 2-week growth stage, the pH of the rhizosphere soil was less than that of the corresponding bulk soil and the CAI values were higher in the rhizosphere soil, indicating that more Cd was complexed with the low-molecular-weight organic acids (LMWOAs) at the soil-root interface and was extractable by M NH4CI. Compared with the bulk soils, the CAI values were 2–9 times higher in the soil rhizosphere of the plots fertilized with Idaho monoammonium phosphate fertilizer at 2-week growth stage, which is attributed to the combined effects of the Cd introduced into the soil rhizosphere from the fertilizer (Cd content of the fertilizer was 144 mg kg?1) and complexation reactions of phosphate and LMWOAs with soil Cd. At 7-week plant growth stage, such differences were not observed. The increased amounts of carbonate-bound and metal-organic complex-bound Cd species of the rhizosphere soils are due to the increased amounts of carbonate, a product of plant respiration, and the LMWOAs at the soil-root interface, respectively. Simple correlation analysis of the data showed that the CAI of the rhizosphere soils of the control plots correlated at least two orders of magnitude better with the metal-organic complex-bound Cd whereas the CAI of the rhizosphere soils treated with Idaho phosphate correlated better with carbonate-bound Cd species in comparison to other species.  相似文献   

13.
选择乐安河—鄱阳湖湿地典型植物群落,采用重要值方法评价各样点植物群落特征并筛选出典型优势植物,通过室内理化测试分析不同生境中优势植物植株及其根区土壤中重金属Cu、Pb、Cd的含量;采用生物富集系数(BCF)方法评价不同优势植物对重金属Cu、Pb、Cd的富集特性。结果表明:研究区湿地植物以草本为主,在各样点共发现124种物种,包括蕨类植物2科2属2种,种子植物40科97属122种,并从中筛选出羊蹄、红蓼、鼠曲草、紫云英、苎麻等5种富集能力较强的优势植物;植物根区土壤中的Cu、Cd含量均超过土壤环境质量三级标准,而且Cu、Cd的最高含量分别为824.03、5.03 mg·kg-1;不同优势植物对Cu、Pb、Cd等3种重金属元素中的1种或2种表现出较强的富集能力,其中优势物种红蓼对Cu具有较强的富集能力,含Cu量最高为148.80 mg·kg-1,另一种优势物种鼠曲草对三种元素的生物富集系数均较高,且对Cd的最高富集含量为15.17 mg·kg-1,对Cd的生物富集系数最高值为19.14,高于其他植物10倍以上,鼠曲草对重金属Cd具有富集植物的基本特征,且对Cu和Cd具有共富集特征并具有较高的耐性,紫云英、羊蹄等对Cd的富集能力也较强。上述5种优势植物种群对鄱阳湖湿地Cu、Pb、Cd等重金属污染物的生态修复具有一定参考价值,可作为鄱阳湖湿地重金属污染修复植物的选择对象。  相似文献   

14.
The in situ phytoextraction of cadmium from soils can only be achieved using plants that are both tolerant to high Cd concentrations and able to extract sufficient amounts of the metal. However, very few plant species are capable of remediating Cd polluted soils in a reasonable time frame. This paper aims to show that the population of the hyperaccumulator Thlaspi caerulescens J. & C. Presl. from Viviez (south of France), which has a high Cd-accumulating capability, is an efficient tool to remove Cd from contaminated soils. Roots of T. caerulescensViviez proliferate in hot spots of metals in soils which is particularly advantageous because of heterogeneity of the distribution of metal in polluted soils. Isotopic techniques showed that plants from this population acquire Cd from the same pools as non-accumulating species, but that it was much more efficient than non-hyperaccumulators at removing the metal from the soil labile pool. This is due: to (i) a specific rooting strategy, and (ii) a high uptake rate resulting from the existence in this population of Cd-specific transport channels or carriers in the root membrane. Growth and overall extraction can be improved with appropriate N fertilisation, supplied either as mineral fertilisers or uncontaminated sewage sludge. Selecting bigger plants is possible from within a suitable Cd-accumulating population to improve the phytoextraction process. Growing the Cd-accumulating populations results in a reduction in the availability of Cd and Zn as shown with field and lysimeter experiments conducted for several years. As a result, on a practical aspect, Cd hyperaccumulating populations of T. caerulescens may be used as a tool to efficiently reduce the availability of Cd in soils, providing appropriate populations are used.  相似文献   

15.
The cadmium (Cd) tolerance and metal-accumulation characteristics of 29 species (18 families) of weed were studied by using outdoor pot-culture experiments. The results of this screening showed that Bidens pilosa and Kalimeris integrifolia (both Asteraceae) expressed some properties that are characteristic of Cd hyperaccumulators. In 10 mg/kg Cd-spiked soil, they accumulated a good deal of Cd in shoots (28 and 25 mg/kg DW, respectively) with high Cd enrichment factors (EFs; concentration in plant/soil). Cd accumulations in shoots were greater than those in roots (translocation factor (TF) >1, concentration in shoot/root) and the shoot biomasses did not decreased significantly compared to the unspiked control. The other weed species showed little accumulation of Cd, Pb, Cu, or Zn. In a concentration-gradient experiment, the Cd accumulation potentials of B. pilosa and K. integrifolia were examined further. Cd concentrations in leaves of B. pilosa growing in soils spiked with 25, 50, and 100 mg/kg Cd were up to 145, 160, and 192 mg/kg, respectively, and the Cd content in stems in the 100 mg/kg Cd-spiked soil was 115 mg/kg, all greater than the 100 mg/kg notional criterion for Cd hyperaccumulation. The Cd EFs and TFs were all greater than 1. The shoot biomasses did not decrease significantly compared to the controls. B. pilosa was thus shown to have some characteristics of a true Cd hyperaccumulator plant.  相似文献   

16.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

17.
Arabidopsis halleri has the rare ability to colonize heavy metal‐polluted sites and is an emerging model for research on adaptation and metal hyperaccumulation. The aim of this study was to analyze the effect of plant–microbe interaction on the accumulation of cadmium (Cd) and zinc (Zn) in shoots of an ecotype of A. halleri grown in heavy metal‐contaminated soil and to compare the shoot proteome of plants grown solely in the presence of Cd and Zn or in the presence of these two metals and the autochthonous soil rhizosphere‐derived microorganisms. The results of this analysis emphasized the role of plant–microbe interaction in shoot metal accumulation. Differences in protein expression pattern, identified by a proteomic approach involving 2‐DE and MS, indicated a general upregulation of photosynthesis‐related proteins in plants exposed to metals and to metals plus microorganisms, suggesting that metal accumulation in shoots is an energy‐demanding process. The analysis also showed that proteins involved in plant defense mechanisms were downregulated indicating that heavy metals accumulation in leaves supplies a protection system and highlights a cross‐talk between heavy metal signaling and defense signaling.  相似文献   

18.
We evaluated the phytoremediation potential of Salix spp. exposed to high cadmium (Cd) and zinc (Zn) concentrations to select feasible plant materials for restoration and revegetation of mining soil contaminated by heavy metals on the basis of their Cd and Zn accumulation, Cd-Zn interaction on bioaccumulation, and the changes of photosynthetic parameters. The Cd and Zn concentrations were in the order of root > leaf > stem, regardless of the species. In the combined Cd and Zn treatment, the leaf and stem Cd concentration in all species were higher relative to Cd-alone treatment. In contrast, the Zn concentration in plant tissues when exposed to the combined Cd + Zn treatment decreased relative to the Zn-alone treatment. The translocation factor (TF) of Cd and Zn from root to leaf was generally higher compared to TF from root to stem than those in the single treatment. The Cd + Zn treatments resulted in enhanced translocation of Cd from root to aboveground tissue (synergistic), while the same treatment suppressed the Zn translocation from root to leaf and stem (antagonistic). The reduction of photosynthetic parameters in Zn alone and Cd + Zn treatments was generally higher than that of Cd-alone treatment. Among the different species, S. caprea and P. alba×glandulosa have the lowest photosynthetic reduction relative to the control. Overall, S. caprea could be a potential candidate for phytoremediation of Cd- and Zn-contaminated sites.  相似文献   

19.
Aims: To characterize bacteria associated with Zn/Cd‐accumulating Salix caprea regarding their potential to support heavy metal phytoextraction. Methods and Results: Three different media allowed the isolation of 44 rhizosphere strains and 44 endophytes, resistant to Zn/Cd and mostly affiliated with Proteobacteria, Actinobacteria and Bacteroidetes/Chlorobi. 1‐Aminocyclopropane‐1‐carboxylic acid deaminase (ACCD), indole acetic acid and siderophore production were detected in 41, 23 and 50% of the rhizosphere isolates and in 9, 55 and 2% of the endophytes, respectively. Fifteen rhizosphere bacteria and five endophytes were further tested for the production of metal‐mobilizing metabolites by extracting contaminated soil with filtrates from liquid cultures. Four Actinobacteria mobilized Zn and/or Cd. The other strains immobilized Cd or both metals. An ACCD‐ and siderophore‐producing, Zn/Cd‐immobilizing rhizosphere isolate (Burkholderia sp.) and a Zn/Cd‐mobilizing Actinobacterium endophyte were inoculated onto S. caprea. The rhizosphere isolate reduced metal uptake in roots, whereas the endophyte enhanced metal accumulation in leaves. Plant growth was not promoted. Conclusions: Metal mobilization experiments predicted bacterial effects on S. caprea more reliably than standard tests for plant growth‐promoting activities. Significance and Impact of the Study: Bacteria, particularly Actinobacteria, associated with heavy metal‐accumulating Salix have the potential to increase metal uptake, which can be predicted by mobilization experiments and may be applicable in phytoremediation.  相似文献   

20.
The cadmium (Cd) resistant bacteria were isolated from soils of Damanganga river, Vapi, and identified 11 potential Cd resistant bacteria based on 16S rDNA sequences. The Cd resistant bacteria belonged to four different genera: Providencia spp., Morganella sp., Stenotrophomonas sp., and Bacillus spp. The assessment of plant growth-promoting (PGP) parameters revealed that the Cd tolerant bacteria showed one or more PGP properties. Further, a pot experiment was conducted to elucidate the effects of Cd resistant bacteria on the plant growth and the uptake of Cd by Sesbania bispinosa. The bacterized seedlings recorded 36.0–74.8% and 21.2–32.9% higher root and shoot lengths, respectively, in Cd amended soil compared with control. The Cd mobilization in the root of S. bispinosa by microbial inoculants ranged from 0.02 ± 0.01 to 1.11 ± 0.06 ppm. The enhanced concentrations of Cd accumulation in S. bispinosa roots correspond to the effect of the bacterial strains on metal mobilization in soil. The present observations showed that the Cd resistant strains protect the plants against the inhibitory effects of Cd, probably due to the production of PGP properties. The present results provided a new insight into the phytoremediation of Cd contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号