首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obligate, intracellular bacteria of the genus Wolbachia often behave as reproductive parasites by manipulating host reproduction to enhance their vertical transmission. One of these reproductive manipulations, cytoplasmic incompatibility, causes a reduction in egg-hatch rate in crosses between individuals with differing infections. Applied strategies based upon cytoplasmic incompatibility have been proposed for both the suppression and replacement of host populations. As Wolbachia infections occur within a broad range of invertebrates, these strategies are potentially applicable to a variety of medically and economically important insects. Here, we examine the interaction between Wolbachia infection frequency and host population size. We use a model to describe natural invasions of Wolbachia infections, artificial releases of infected hosts and releases of sterile males, as part of a traditional sterile insect technique programme. Model simulations demonstrate the importance of understanding the reproductive rate and intraspecific competition type of the targeted population, showing that releases of sterile or incompatible individuals may cause an undesired increase in the adult number. In addition, the model suggests a novel applied strategy that employs Wolbachia infections to suppress host populations. Releases of Wolbachia-infected hosts can be used to sustain artificially an unstable coexistence of multiple incompatible infections within a host population, allowing the host population size to be reduced, maintained at low levels, or eliminated.  相似文献   

2.
Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila   总被引:3,自引:0,他引:3  
Wolbachia pipientis is a vertically transmitted, obligate intracellular symbiont of arthropods. The bacterium is best known for its ability to manipulate host reproductive biology where it can induce cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. In addition to the various reproductive phenotypes it generates through interaction with host reproductive tissue it is also known to infect somatic tissues. However, relatively little is known about the consequences of infection of these tissues with the exception that in some hosts Wolbachia acts as a classical mutualist and in others a pathogen, dramatically shortening adult insect lifespan. Manipulation experiments have demonstrated that the severity of Wolbachia-induced effects on the host is determined by a combination of host genotype, Wolbachia strain, host tissue localization, and interaction with the environment. The recent completion of the whole genome sequence of Wolbachia pipientis wMel strain indicates that it is likely to use a type IV secretion system to establish and maintain infection in its host. Moreover, an unusual abundance of genes encoding proteins with eukaryotic-like ankyrin repeat domains suggest a function in the various described phenotypic effects in hosts.  相似文献   

3.
Wolbachia are maternally inherited bacteria that infect a large number of insects and are responsible for different reproductive alterations of their hosts. One of the key features of Wolbachia biology is its ability to move within and between host species, which contributes to the impressive diversity and range of infected hosts. Using multiple Wolbachia genes, including five developed for Multi-Locus Sequence Typing (MLST), the diversity and modes of movement of Wolbachia within the wasp genus Nasonia were investigated. Eleven different Wolbachia were found in the four species of Nasonia , including five newly identified infections. Five infections were acquired by horizontal transmission from other insect taxa, three have been acquired by hybridization between two Nasonia species, which resulted in a mitochondrial- Wolbachia sweep from one species to the other, and at least three have codiverged during speciation of their hosts. The results show that a variety of transfer mechanisms of Wolbachia are possible even within a single host genus. Codivergence of Wolbachia and their hosts is uncommon and provides a rare opportunity to investigate long-term Wolbachia evolution within a host lineage. Using synonymous divergence among codiverging infections and host nuclear genes, we estimate Wolbachia mutation rates to be approximately one-third that of the nuclear genome.  相似文献   

4.
As a result of an intense host-parasite evolutionary arms race, parasitic wasps frequently display high levels of specialization on very few host species. For instance, in braconid wasps very few generalist species have been described. However, within this family, Cotesia sesamiae is a generalist species that is widespread in sub-Saharan Africa and develops on several lepidopteran hosts. In this study, we tested the hypothesis that C.?sesamiae may be a cryptic specialist when examined at the intraspecific level. We sequenced exon 2 of CrV1, a gene of the symbiotic polyDNAvirus that is integrated into the wasp genome and is associated with host immune suppression. We found that CrV1 genotype was more closely associated with the host in which the parasitoid developed than any abiotic environmental factor tested. We also tested a correlation between CrV1 genotype and an infection with Wolbachia bacteria, which are known for their ability to induce reproductive isolation. The Wolbachia bacteria infection polymorphism was also found as a major factor explaining the genetic structure of CrV1, and, in addition, the best model explaining CrV1 genetic structure involved an interaction between Wolbachia infection and host species. We suggest that Wolbachia could act as an agent capable of maintaining advantageous alleles for host specialization in different populations of C.?sesamiae. This mechanism could be applicable to other insect models because of the high prevalence of Wolbachia in insects.  相似文献   

5.
Hughes GL  Pike AD  Xue P  Rasgon JL 《PloS one》2012,7(4):e36277
The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex vivo culturing technique to assess the suitability of Wolbachia-host germline associations. Wolbachia infects the dissected germline tissue of multiple insect species when the host tissue and bacteria are cultured together. Ovary and testis infection occurs in a density-dependent manner. Wolbachia strains are more capable of invading the germline of their native or closely related rather than divergent hosts. The ability of Wolbachia to associate with the germline of novel hosts is crucial for the development of stably-transinfected insect lines. Rapid assessment of the suitability of a strain-host combination prior to transinfection may dictate use of a particular Wolbachia strain. Furthermore, the cultured germline tissues of two major Anopheline vectors of Plasmodium parasites are susceptible to Wolbachia infection. This finding further enhances the prospect of using Wolbachia for the biological control of malaria.  相似文献   

6.
Inherited bacterial symbionts from the genus Wolbachia have attracted much attention by virtue of their ability to manipulate the reproduction of their arthropod hosts. The potential importance of these bacteria has been underlined by surveys, which have estimated that 17% of insect species are infected. We examined whether these surveys have systematically underestimated the proportion of infected species through failing to detect the low-prevalence infections that are expected when Wolbachia distorts the sex ratio. We estimated the proportion of species infected with Wolbachia within Acraea butterflies by testing large collections of each species for infection. Seven out of 24 species of Acraea were infected with Wolbachia. Four of these were infected with Wolbachia at high prevalence, a figure compatible with previous broad-scale surveys, whilst three carried low-prevalence infections that would have had a very low likelihood of being detected by previous sampling methods. This led us to conclude that sex-ratio-distorting Wolbachia may be common in insects that have an ecology and/or genetics that permit the invasion of these parasites and that previous surveys may have seriously underestimated the proportion of species that are infected.  相似文献   

7.
王哲  乔格侠 《昆虫知识》2011,48(6):1823-1834
Wolbachia pipientis是一种广泛存在于节肢动物和线虫生殖组织中的细胞内共生菌,通过母系生殖细胞在寄主种群内垂直传播。据分析,Wolbachia在昆虫中的感染率大约为66%,是昆虫中分布最广泛的胞内共生菌。Wolbachia能够以多种方式调控寄主的生殖行为,包括诱导细胞质不亲和、诱导孤雌生殖、雌性化、杀雄作用等。近10年来,Wolbachia的研究在多个领域都取得了长足进展。本文介绍了Wolbachia的多样性与分布、对寄主生殖行为的影响、基因组结构,以及其与寄主在基因组水平上的相互作用等领域的最新研究成果,并展望了Wolbachia研究的发展趋势。  相似文献   

8.
Wolbachia are maternally inherited intracellular alpha-Proteobacteria found in numerous arthropod and filarial nematode species. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel, we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field.  相似文献   

9.
Wolbachia bacteria infect approximately 20% of all insect species, and cause a range of alterations to host reproduction, including imposition of thelytoky. The incidence and phenotypic impact of Wolbachia remains to be established in many insect taxa, and considerable research effort is currently focused on its association with particular reproductive modes and the relative importance of the various pathways via which infection occurs. Gallwasps represent an attractive system for addressing these issues for two reasons. First, they show a diversity of reproductive modes (including arrhenotoky, thelytoky and cyclical parthenogenesis) in which the impact of Wolbachia infection can be examined. Second, they occupy two intimately linked trophic niches (gall-inducers and inquilines) between which there is potential for the horizontal exchange of Wolbachia infection. In the arrhenotokous gallwasp lineages screened to date (the herb-galling 'Aylacini' and the rose-galling Diplolepidini), Wolbachia infection always induces thelytoky. The impact of Wolbachia in other arrhenotokous clades, and in the cyclically parthenogenetic clades remains unknown. Here we use polymerase chain reaction (PCR) screening and sequence data for two Wolbachia genes (wsp and ftsZ) to examine the prevalence and incidence of Wolbachia infection in 64 species (a total of 609 individuals) in two further tribes: the arrhenotokous inquilines (tribe Synergini), and the cyclically parthenogenetic oak gallwasps (tribe Cynipini). We ask: (i) whether Wolbachia infection has any apparent impact on host reproduction in the two tribes and (ii) whether there is any correlation between Wolbachia infection and the apparent lack of an arrhenotokous generation in many oak gallwasp life cycles. We show: (i) that Wolbachia infection is rare in the Cynipini. Infected species show no deviation from cyclical parthenogenesis, and infection is no more common in species known only from a thelytokous generation; (ii) that there is a higher incidence of infection within the arrhenotokous inquilines, and generally in gallwasp tribes without cyclical parthenogensis; (iii) all Wolbachia-positive inquiline species are known to possess males, implying either that Wolbachia infection does not result in loss of sex in this tribe or, more probably, that (as for some rose gallwasps) Wolbachia infection leads to loss of sex in specific populations; and (iv) although we find some inquilines and gall inducers to be infected with Wolbachia having the same wsp sequence, these hosts are not members of the same gall communities, arguing against frequent horizontal transmission between these two trophic groups. We suggest that exchange may be mediated by the generalist parasitoids common in oak galls.  相似文献   

10.
Many intracellular micro-organisms are now known to cause reproductive abnormalities and other phenomena in their hosts. The endosymbiont Wolbachia is the best known of these reproductive manipulators owing to its extremely high incidence among arthropods and the diverse host effects it has been implicated as causing. However, recent evidence suggests that another intracellular bacterium, a Cytophaga-like organism (CLO), may also induce several reproductive effects in its hosts. Here, we present the first survey of arthropod hosts for infection by the CLO. We use a sensitive hemi-nested polymerase chain reaction method to screen 223 species from 20 arthropod orders for infection by the CLO and Wolbachia. The results indicate that, although not as prevalent as Wolbachia, the CLO infects a significant number of arthropod hosts (ca. 7.2%). In addition, double infections of the CLO and Wolbachia were found in individuals of seven arthropod species. Sequencing analysis of the 16S rDNA region of the CLO indicates evidence for horizontal transmission of the CLO strains. We discuss these results with reference to future studies on host effects induced by intracellular micro-organisms.  相似文献   

11.
Wolbachia bacteria are obligate intracellular alpha-Proteobacteria of arthropods and nematodes. Although widespread among isopod crustaceans, they have seldom been found in non-isopod crustacean species. Here, we report Wolbachia infection in fourteen new crustacean species. Our results extend the range of Wolbachia infections in terrestrial isopods and amphipods (class Malacostraca). We report the occurrence of two different Wolbachia strains in two host species (a terrestrial isopod and an amphipod). Moreover, the discovery of Wolbachia in the goose barnacle Lepas anatifera (subclass Thecostraca) establishes Wolbachia infection in class Maxillopoda. The new bacterial strains are closely related to B-supergroup Wolbachia strains previously reported from crustacean hosts. Our results suggest that Wolbachia infection may be much more widespread in crustaceans than previously thought. The presence of related Wolbachia strains in highly divergent crustacean hosts suggests that Wolbachia endosymbionts can naturally adapt to a wide range of crustacean hosts. Given the ability of isopod Wolbachia strains to induce feminization of genetic males or cytoplasmic incompatibility, we speculate that manipulation of crustacean-borne Wolbachia bacteria might represent potential tools for controlling crustacean species of commercial interest and crustacean or insect disease vectors.  相似文献   

12.
Wolbachia pipientis is an endosymbiotic bacterium present in diverse insect species. Although it is well studied for its dramatic effects on host reproductive biology, little is known about its effects on other aspects of host biology, despite its presence in a wide array of host tissues. This study examined the effects of three Wolbachia strains on two different Drosophila species, using a laboratory performance assay for insect locomotion in response to olfactory cues. The results demonstrate that Wolbachia infection can have significant effects on host responsiveness that vary with respect to the Wolbachia strain-host species combination. The wRi strain, native to Drosophila simulans, increases the basal activity level of the host insect as well as its responsiveness to food cues. In contrast, the wMel strain and the virulent wMelPop strain, native to Drosophila melanogaster, cause slight decreases in responsiveness to food cues but do not alter basal activity levels in the host. Surprisingly, the virulent wMelPop strain has very little impact on host responsiveness in D. simulans. This novel strain-host relationship was artificially created previously by transinfection. These findings have implications for understanding the evolution and spread of Wolbachia infections in wild populations and for Wolbachia-based vector-borne disease control strategies currently being developed.  相似文献   

13.
Wolbachia are maternally inherited, intracellular, alpha proteobacteria that infect a wide range of arthropods. They cause three kinds of reproductive alterations in their hosts: cytoplasmic incompatibility, parthenogenesis and feminization. There have been many studies of the distribution of Wolbachia in arthropods, but very few crustacean species are known to be infected. We investigated the prevalence of Wolbachia in 85 species from five crustacean orders. Twenty-two isopod species were found to carry these bacteria. The bacteria were found mainly in terrestrial species, suggesting that Wolbachia came from a continental environment. The evolutionary relationships between these Wolbachia strains were determined by sequencing bacterial genes and by interspecific transfers. All the bacteria associated with isopods belonged to the Wolbachia B group, based on 16S rDNA sequence data. All the terrestrial isopod symbionts in this group except one formed an independent clade. The results of interspecific transfers show evidence of specialization of Wolbachia symbionts to their isopod hosts. They also suggest that host species plays a more important role than bacterial phylogeny in determining the phenotype induced by Wolbachia infection.  相似文献   

14.
Wolbachia is a group of Gram‐negative, obligatory intracellular and maternally transmitted alpha‐Proteobacteria. They have been reported to establish symbiotic relationships with a great variety of species of the most diverse animal class, the insects, as well as with several other arthropods and with filarial nematodes. The reproductive alterations Wolbachia causes in its hosts account for its widespread distribution. These alterations include parthenogenesis, feminization, male killing, and cytoplasmic incompatibility (CI). CI is the most frequent and best studied effect Wolbachia has on its hosts. CI is a form of male sterility, ultimately resulting in embryo lethality in diplodiploid host species. As a consequence of CI, Wolbachia infections spread and lead to the replacement of uninfected populations. CI was used nearly four decades ago to control important disease vectors with very encouraging results, and a number of more recent studies have confirmed the effectiveness of CI as a pest population suppression tool as well as a driving mechanism. Furthermore, recent advancements in the field encourage the development of Wolbachia‐based methods for the biological control of insect pests and disease vectors of agricultural, environmental and medical importance.  相似文献   

15.
The α-proteobacteria Wolbachia are among the most common intracellular bacteria and have recently emerged as important drivers of arthropod biology. Wolbachia commonly act as reproductive parasites in arthropods by inducing cytoplasmic incompatibility (CI), a type of conditional sterility between hosts harboring incompatible infections. In this study, we examined the evolutionary histories of Wolbachia infections, known as wPip, in the common house mosquito Culex pipiens, which exhibits the greatest variation in CI crossing patterns observed in any insect. We first investigated a panel of 20 wPip strains for their genetic diversity through a multilocus scheme combining 13 Wolbachia genes. Because Wolbachia depend primarily on maternal transmission for spreading within arthropod populations, we also studied the variability in the coinherited Cx. pipiens mitochondria. In total, we identified 14 wPip haplotypes, which all share a monophyletic origin and clearly cluster into five distinct wPip groups. The diversity of Cx. pipiens mitochondria was extremely reduced, which is likely a consequence of cytoplasmic hitchhiking driven by a unique and recent Wolbachia invasion. Phylogenetic evidence indicates that wPip infections and mitochondrial DNA have codiverged through stable cotransmission within the cytoplasm and shows that a rapid diversification of wPip has occurred. The observed pattern demonstrates that a considerable degree of Wolbachia diversity can evolve within a single host species over short evolutionary periods. In addition, multiple signatures of recombination were found in most wPip genomic regions, leading us to conclude that the mosaic nature of wPip genomes may play a key role in their evolution.  相似文献   

16.

Background  

The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host:symbiont coevolution. Wolbachia 's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, w Mel and the nematode Brugia malayi, w Bm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts.  相似文献   

17.
We surveyed for the presence and identity of Wolbachia in 44 species of chalcid wasps associated with 18 species of Panamanian figs. We used existing detailed knowledge of the population structures of the host wasps, as well as the ecological and evolutionary relationships among them, to explore the relevance of each of these factors to Wolbachia prevalence and mode of transmission. Fifty-nine per cent of these wasp species have Wolbachia infections, the highest proportion reported for any group of insects. Further, neither the presence nor the frequency of Wolbachia within hosts was correlated with the population structure of pollinator hosts. Phylogenetic analyses of wsp sequence data from 70 individuals representing 22 wasp species show that neither the close phylogenetic relationship nor close ecological association among host species is consistently linked to close phylogenetic affinities of the Wolbachia associated with them. Moreover, no genetic variation was detected within any Wolbachia strain from a given host species. Thus, the spread of Wolbachia within host species exceeds the rate of horizontal transmission among species and both exceed the rate of mutation of the wsp gene in Wolbachia. The presence and, in some cases, high frequency of Wolbachia infections within highly inbred species indicate that the Wolbachia either directly increase host fitness or are frequently horizontally transferred within these wasp species. However, the paucity of cospeciation of Wolbachia and their wasp hosts indicates that Wolbachia do not persist within a given host lineage for long time-periods relative to speciation times.  相似文献   

18.
Symbiotic associations often enhance hosts' physiological capabilities, allowing them to expand into restricted terrains, thus leading to biological diversification. Stable maintenance of partners is essential for the overall biological system to succeed. The viviparous tsetse fly (Diptera: Glossinidae) offers an exceptional system to examine factors that influence the maintenance of multiple symbiotic organisms within a single eukaryotic host. This insect harbours three different symbionts representing diverse associations, coevolutionary histories and transmission modes. The enterics, obligate mutualist Wigglesworthia and beneficial Sodalis, are maternally transmitted to the intrauterine larvae, while parasitic Wolbachia infects the developing oocyte. In this study, the population dynamics of these three symbionts were examined through host development and during potentially disruptive events, including host immune challenge, the presence of third parties (such as African trypanosomes) and environmental perturbations (such as fluctuating humidity levels). While mutualistic partners exhibited well-regulated density profiles over different host developmental stages, parasitic Wolbachia infections varied in individual hosts. Host immune status and the presence of trypanosome infections did not impact the steady-state density levels observed for mutualistic microbes in either sex, while these factors resulted in an increase in Wolbachia density in males. Interestingly, perturbation of the maternal environment resulted in the deposition of progeny harbouring greater overall symbiont loads. The regulation of symbiont density, arising from coadaptive processes, may be an important mechanism driving inter-specific relations to ensure their competitive survival and to promote specialization of beneficial associations.  相似文献   

19.
Wolbachia are common vertically transmitted endosymbiotic bacteria found in < 70% of insect species. They have generated considerable recent interest due to the capacity of some strains to protect their insect hosts against viruses and the potential for this to reduce vector competence of a range of human diseases, including dengue. In contrast, here we provide data from field populations of a major crop pest, African armyworm (Spodoptera exempta), which show that the prevalence and intensity of infection with a nucleopolydrovirus (SpexNPV) is positively associated with infection with three strains of Wolbachia. We also use laboratory bioassays to demonstrate that infection with one of these strains, a male-killer, increases host mortality due to SpexNPV by 6-14 times. These findings suggest that rather than protecting their lepidopteran host from viral infection, Wolbachia instead make them more susceptible. This finding potentially has implications for the biological control of other insect crop pests.  相似文献   

20.
沃尔巴克氏体Wolbachia为母系传播的胞内共生菌,可通过对宿主产生多种调控方式扩大其自身在宿主种群的传播。据推测,有40%~60%的节肢动物都感染有Wolbachia,并可根据不同株系间的系统发育关系将其分为多个超群。为了有助于深入研究Wolbachia对其宿主的调控方式及其调控机制及提出更为有效的害虫生物防治策略,本文综述了节肢动物内共生菌Wolbachia的研究现状。1924年Wolbachia被报道首次发现于尖音库蚊Culex pipiens的生殖组织中,1971年确认其与宿主的胞质不亲和现象有关。Wolbachia可以通过胞质不亲和、杀雄、雌性化、孤雌生殖等作用方式调控宿主的生殖。除生殖调控之外,Wolbachia对宿主的调控方式还包括调控宿主新陈代谢、抵制病原菌、影响宿主生殖力等。Wolbachia调控的胞质不亲和现象可用“修饰-营救”(modification-rescue)模型解释,且已有与Wolbachia诱导宿主胞质不亲和相关的功能基因被报道。wMel株系是首个公布全基因组序列的Wolbachia株系,随后又有数十种不同株系的Wolbachia基因组陆续被破译。wMel株系Wolbachia可起到抑制登革热病毒传播的作用;同时,Wolbachia和昆虫不育技术的结合对白纹伊蚊Aedes albopictus野外种群起到良好的控制效果。鉴于目前节肢动物内共生菌Wolbachia的研究现状,我们认为未来应开展以下研究:(1)Wolbachia基因组及生殖调控作用关键功能基因的研究;(2)Wolbachia与宿主间互作机制的研究;(3)Wolbachia在生物防治方面的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号