首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W K Pollock  S O Sage  T J Rink 《FEBS letters》1987,210(2):132-136
We investigated the restoration of [Ca2+]i in fura-2-loaded human platelets following discharge of internal Ca2+ stores in the absence of external Ca2+. After stimulation by thrombin [Ca2+]i returned from a peak level of 0.6 μM to resting levels within 4 min. When ionomycin discharged the internal stores the recovery was slower with [Ca2+]i still elevated at around 0.5 μM after 5 min. Thrombin added shortly after ionomycin could accelerate the recovery of [Ca2+]i and restore resting levels within 5 min, an effect that was mimicked by phorbol-12-myristate-13-acetate (PMA). Since the continued presence of ionomycin precluded reuptake into the internal stores we conclude that thrombin and PMA stimulate Ca2+ efflux, perhaps via protein kinase C actions on a plasma membrane Ca2+ pump.  相似文献   

2.
Chao YY  Jan CR  Ko YC  Chen JJ  Jiann BP  Lu YC  Chen WC  Su W  Chen IS 《Life sciences》2002,70(26):4367-3121
The effect of five lignans isolated from Hernandia nymphaeifolia on estrogenic compounds (17β-estradiol, tamoxifen and clomiphene)-induced Ca2+ mobilization in human neutrophils was investigated. The five lignans were epi-yangambin, epi-magnolin, epi-aschantin, deoxypodophyllotoxin and yatein. In Ca2+–containing medium, the lignans (50–100 μM) inhibited 10 μM 17β-estradiol- and 5 μM tamoxifen-induced increases in intracellular free Ca2+ levels ([Ca2+]i) without changing 25 μM clomiphene-induced [Ca2+]i increase. 17β-estradiol and tamoxifen increased [Ca2+]i by causing Ca2+ influx and Ca2+ release because their responses were partly reduced by removing extracellular Ca2+. In contrast, clomiphene solely induced Ca2+ release. The effect of the lignans on these two Ca2+ movement pathways underlying 17β-estradiol- and tamoxifen-induced [Ca2+]i increases was explored. All the lignans (50–100 μM) inhibited 10 μM 17β-estradiol-and 5 μM tamoxifen-induced Ca2+ release, and 17β-estradiol-induced Ca2+ influx. However, only 100 μM epi-aschantin was able to reduce tamoxifen-induced Ca2+ influx while the other lignans had no effect. Collectively, this study shows that the lignans altered estrogenic compounds-induced Ca2+ signaling in human neutrophils in a multiple manner.  相似文献   

3.
The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of PC3 human prostate cancer cells was explored by using fura-2 as a Ca2+ indicator. Clomiphene at concentrations between 10-50 μM increased [Ca2+]i in a concentration-dependent manner. The [Ca2+]i signal was biphasic with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by 41%. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with clomiphene in Ca2+-free medium, confirming that clomiphene induced Ca2+ entry. In Ca2+-free medium, pretreatment with 50 μM brefeldin A (to permeabilize the Golgi complex), 1 μM thapsigargin (to inhibit the endoplasmic reticulum Ca2+ pump), and 2 μM carbonylcyanide m-chlorophenylhydrazone (to uncouple mitochondria) inhibited 25% of 50 μM clomiphene-induced store Ca2+ release. Conversely, pretreatment with 50 μM clomiphene in Ca2+-free medium abolished the [Ca2+]i increase induced by brefeldin A, thapsigargin or carbonylcyanide m-chlorophenylhydrazone. The 50 μM clomiphene-induced Ca2+release was unaltered by inhibiting phospholipase C with 2 μM 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Trypan blue exclusion assay suggested that incubation with clomiphene (50 μM) for 2-15 min induced time-dependent decrease in cell viability by 10-50%. Collectively, the results suggest that clomiphene induced [Ca2+]i increases in PC3 cells by releasing store Ca2+ from multiple stores in an phospholipase C-independent manner, and by activating Ca2+ influx; and clomiphene was of mild cytotoxicity.  相似文献   

4.
Glucose-induced insuline release, glucose-induced rises in intracellular free Ca2+ concentration ([Ca2+]i), and voltage-dependent Ca2+ channel activity were assessed in monolayer cultures of β-vells 3–5 day-old rats. The glucose-stimulated insulin secretory responses and [Ca2+]i rises were like those in adult rat β-cells rather than fetal rat β-cells. Voltage-dependent Ca2+ channel antagonists decreased glucose-induced insulin secretion, aborted the [Ca2+]2 rise and, like deprivation of extracellular Ca2+, prevented the glucose-induced rise in [Ca2+]i when added before the glucose challenge. The presence of nifedipine-sensitive, voltage-dependent Ca2+ channels was demonstrated directly by measuring Ca2+ currents using the whole-cell configuration of the patch-clamp technique and indirectly by measuring [Ca2+]1 after membrane depolarization by 45 mMm K+ or 200 μM tolbutamide. Thus, in cultured β-cells of 3–5 day-old rats the coupling of glucose stimulation to Ca2+ influx is essentially mature, in contrast to what has been reported for fetal or very early neonatal cells.  相似文献   

5.
Although the rapid and considerable membrane depolarization response which accompanies activation of the phagocyte NADPH oxidase is due to transmembrane electron fluxes, little is known about the involvement of reactive oxidant species (ROS) in the subsequent repolarization response. In the current study, we have investigated the effects of superoxide dismutase (SOD), catalase, methionine, and the myeloperoxidase (MPO) inhibitors, sodium azide and 4-aminobenzoyl hydrazide (ABAH), as well as those of H2O2 and HOCl (both at 100 μM) on the alterations in membrane potential which accompany activation of human neutrophils with the chemoattractant, FMLP (1 μM), and on store-operated uptake of Ca2+. The generation of ROS by FMLP-activated neutrophils was monitored according to the magnitude of oxygen consumption and autoiodination, while spectrofluorimetric procedures were used to measure alterations in membrane potential and influx of Ca2+. Treatment of the cells with H2O2, and HOCl, significantly impeded membrane repolarization, while sodium azide, ABAH, methionine, and catalase exerted the opposite effects, potentiating both the rates and the magnitudes of membrane repolarization and store-operated uptake of Ca2+. These observations demonstrate that NADPH oxidase regulates neutrophil membrane potential and Ca2+ influx not only via its electrogenic activity, but also as a consequence of the generation of ROS.  相似文献   

6.
In this study we investigated the release of Ca2+ in brain microsomes after Ca2+ loading by the Ca2+-ATPase or by the Na+/Ca2+ exchanger. The results show that in microsomes loaded with Ca2+ by the Ca2+-ATPase, Ins(1,4,5)P3 (5 μM) release 21±2% of the total Ca2+ accumulated, and that in the microsomes loaded with Ca2+ by the Na2+/Ca2+ exchanger, Ins(1,4,5)P3 released 28±3% of the total Ca2+ accumulated. These results suggest that receptors of Ins(1,4,5)P3 may be co-localized with the Na2+/Ca2+ exchanger in the endoplasmic reticulum membrane or that there are Ins(1,4,5)P3 receptors in the plasma membrane where the Na2+/Ca2+ exchanger is normally present, or both. We also found that Ins(1,4,5)P3 inhibited the Ca2+-ATPase by 33.7%, but that it had no significant effect on the Na2+/Ca2+ exchanger.  相似文献   

7.
Franklin Fuchs 《BBA》1971,226(2):453-458
Troponin prepared from rabbit skeletal muscle in the presence of dithiothreitol (SH-troponin) was found to have a sulfhydryl content of about 4 moles/1 × 105 g in the presence of a Ca2+-chelating agent. The addition of physiological concentrations of Ca2+ reduced the reactive sulfhydryl content to 2.0–2.5 moles/1 × 105 g. These sulfhydryl groups are evidently not direct participants in the inhibition of actomyosin superprecipitation, since treatment with N-ethylmaleimide had no effect on the Ca2+-sensitizing activity of SH-troponin.

Troponin prepared in the absence of dithiothreitol (S-S-troponin) showed a significant reduction in Ca2+-sensitizing activity, relative to SH-troponin. The sulfhydryl groups of S-S-troponin, approx. 2 moles/1 × 105 g were not appreciably affected by Ca2+.

It is postulated that the Ca2+-sensitive sulfhydryl groups exist at a site which is essential for the regulatory function of troponin and which undergoes a conformational change upon the binding of Ca2+.  相似文献   


8.
We previously demonstrated that oxysterols added to the culture medium of NRK 49F cells labelled with [14C] arachidonic acid potentiated arachidonic acid (AA) release and prostaglandin (PG) E2 biosynthesis induced by the activation of these cells with fetal calf serum (FCS). In the absence of FCS, oxysterols had no effect on AA release. As phospholipase (Plase) A2 activity is Ca2+-dependent, we investigated whether oxysterol potentiating effect on AA release was related to an effect of these compounds on cell Ca2+ concentration. In this paper, we show that the intensity of potentiation by oxysterol varies with the external cell Ca2+ concentration; when external Ca2+ is chelated by EGTA, the oxysterol effect persists, though it is decreased. The Ca2+ channel inhibitor nifedipine does not decrease the potentiating effect of 25-OH cholesterol, indicating that, if oxysterol favours Ca2+ entry into the cell, the nifedipine inhibited channel is not involved. At the usual concentration (5 μm/ml), oxysterols are not able to increase, mimmediately or after a short time of contact (90 min) the concentration of intracellular free Ca2+ ([Ca2+])i measured by fluorescence of Quinn-2; at very high concentration of oxysterol (25 μm/ml), [Ca2+]i only slightly increases (+30%). The liberation of AA induced by cell activation with the Ca2+ ionophore ionomycin is also potentiated by 25-OH cholesterol. All these observations are not in favour of a proper effect o oxysterols on cell Ca2+ level.  相似文献   

9.
H Schmidt  G Oettling  U Drews 《FEBS letters》1988,230(1-2):35-37
Activation of muscarinic receptors of heart cells elevates the intracellular Ca2+ concentration. The increase is considered to be due to influx of extracellular Ca2+. We show that intracellular Ca2+ mobilization is involved. Cell suspensions prepared from hearts of 6-day-old chick embryos were loaded with the fluorescent Ca2+ chelator chlortetracycline. Muscarinic stimulation induces a dose-dependent fluorescence decrease (ED50=2.6 × 10−6 M) indicating intracellular Ca2+ mobilization.  相似文献   

10.
Extracellular ATP dose dependently stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in osteoblast-like MC3T3-E1 cells. ATP stimulated arachidonic acid release and the synthesis of prostaglandin E2 (PGE2). However, the ATP-induced arachidonic acid release was significantly reduced by chelating extracellular Ca2+ with EGTA. On the other hand, ATP induced DNA synthesis of these cells in a dose-dependent manner in the range between 1μM and 1 mM. The pretreatment with indomethacin, a cyclooxygenase inhibitor, suppressed both ATP-induced PGE2 synthesis and DNA synthesis in these cells. The inhibitory effect by 50μM indomethacin on the DNA synthesis was reversed by adding 10μM PGE2. These results strongly suggest that extracellular ATP stimulates Ca2+ influx resulting in the release of arachidonic acid in osteoblast-like cells and that extracellular ATP-induced proliferative effect is mediated, at least in part, by ATP-stimulated PGE2 synthesis.  相似文献   

11.
The Ca2+-mobilizing metabolite cyclic ADP-ribose (cADPR) has been shown to release Ca2+ from ryanodine-sensitive stores in many cells. We show that this metabolite at a concentration of 17μM, but not its precursor β-NAD+ nor non-cyclic ADPR at the same concentration, is active in releasing Ca2+ from rabbit skeletal muscle sarcoplasmic reticulum. The release was not sensitive to Ruthenium red (1μM) nor to the ryanodine receptor-specific scorpion toxin Buthotus1-1 (10 μM). In planar bilayer single channel recordings, concentrations up to 50μM cADPR did not increase the open probability of Ruthenium red and toxin-sensitive Ca2+ release channels. Thus Ca2+ release induced by cADPR in skeletal muscle sarcoplasmic reticulum may not involve opening of ryanodine receptors.  相似文献   

12.
Ca2+ mobilization elicited by simulation with brief pulses of high K + were monitored with confocal laser scanned microscopy in intact, guinea pig cardiac myocytes loaded with the calcium indicator fluo-3. Single wavelength ratioing of fluorescence images obtained after prolonged integration times revealed non-uniformities of intracellular Ca2+ changes across the cell, suggesting the presence of significant spatial Ca2+ gradients. Treatment with 20 μM ryanodine, an inhibitor of Ca2+ release from the SR, and 10 μM verapamil, a calcium channel blocker, reduced by 42% and 76% respectively the changes in [Ca2+]i elicited by membrane depolarization. The overall spatial distribution of [Ca2+]i changes appeared unchanged. Ca2+ transients recorded in the presence of verapamil and ryanodine (about 20% of the size of control responses), diminished in the presence of 50 μM 2-4 Dichlorbenzamil (DCB) or 5 mM nickel, two relatively specific inhibitors of the exchange mechanism. Conversely, when the reversal potential of the exchange was shifted to negative potentials by lowering [Na+]0 or by increasing [Na+]i by treatment with 20 μM monensin, the amplitude of these Ca2+ transients increased. Ca2+ transients elicited by membrane depolarization and largely mediated by reverse operation of Na+-Ca2+ exchange could be recorded in the presence of ryanodine, verapamil and monensin. These findings suggest that in intact guinea pig cardiac cells, Ca2+ influx through the exchange mechanism activated by a membrane depolarization in the physiological range can be sufficient to play a significant role in excitation-contraction coupling.  相似文献   

13.
The activation and deactivation of Ca2+- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved F?rster resonance energy transfer (FRET), we determined the occurrence of Ca2+-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca2+ concentrations ([Ca2+]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca2+]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.  相似文献   

14.
1. The alteration of the Ca2+ requirements of the ATPase activity of fibrils from rabbits and crabs at varying ionic strength, pH and concentration of MgATP (i.e. MgATP2− + MgHATP) was investigated.

2. Under physiological conditions, it was found that the ATPase activity of rabbit and crab fibrils after an initial increase decreased steeply when the Ca2+ concentration is raised above 1×10−4 M. This is a primary effect of the over-optimal Ca2+ concentration and not a secondary one caused by the influence of accompanying ions.

3. The Ca2+ requirements for ATP splitting by rabbit fibrils remain constant at an ionic strength from 0.1 to 0.2 and for a MgATP concentration in the range from 0.5 to 10 mM. At I = 0.05 it is about 5 times smaller than at 0.1. When the pH is decreased from 8 to 7, the Ca2+ requirements are increased some 10 times but only 3 times when the pH is varied between 7 and 6.

4. In crab fibrils, there is no alteration of the Ca2+ requirements when the ionic strength is varied between 0.05 and 0.2, but a reduction of the pH from 8.0 to 6.0 raises the Ca2+ requirements for half activation and for threshold by a factor of 10. Changing the MgATP concentration increases the Ca2+ requirements only in the range from 1 to 5 mM, while the concentration required in 0.5 mM is identical with that at 1 mM, and 10 mM corresponds to 5 mM.

5. It can be deduced from the experimental results that at a pH above 6.0 maximal activation is always obtained if the Ca2+ concentration is 5×10−5 M. By contrast, relaxation is only achieved when the Ca2+ concentration is below 1×10−7 M for pH 7.0 and I > 0.1 or below 1×10−8 for pH > 7.0 or I < 0.1.

6. To achieve complete relaxation, an ethyleneglycoldiaminotetraacetate (EGTA) concentration of 1 mM is sufficient, even when there is a large degree of contamination by Ca2+ as long as the pH stays above 6.5.  相似文献   


15.
The stiffness of the sarcomeres was studied during the diastolic interval of 18 stimulated (0.5 Hz) cardiac trabeculae of rat (pH 7.4; temperature = 25°C). Sarcomere length (SL) and force (F) were measured using, respectively, laser diffraction techniques (resolution: 4 nm) and a silicon strain gauge (resolution: 0.63 μN). Sinusoidal perturbations (frequency = 500 Hz) were imposed to the length of the preparation. The stiffness was evaluated from the corresponding F and SL sinusoids by analysis of both signals together either in the time domain or in the frequency domain. A short burst (duration = 30 ms) of sinusoidal perturbations was repeated at 5 predetermined times during diastole providing 5 measurements of stiffness during the time interval separating two twitches. These measurements revealed that stiffness increases by 30% during diastole, while a simultaneous expansion of the sarcomeres (amplitude = 10-60 nm) was detected. Measurements of the fluorescence of fura-2 under the same conditions revealed a continuous exponential decline of [Ca2+]i from 210 to 90 nM (constant of time 300 ms) during diastole. In order to test the possibility that the increase of sarcomere stiffness and the decline of [Ca2+]i were coupled during diastole of intact trabeculae, we studied the effect of different free Ca2+-concentrations ([Ca2+]) between 1 and 430 nM on sarcomere stiffness in rat cardiac trabeculae skinned by saponin (n = 17). Stiffness was studied using 500 Hz sinusoidal perturbations of muscle length (ML). We found that, below 70 nM, the stiffness was independent of [Ca2+]; between 70 and 200 nM, the stiffness declined with increase of [Ca2+]; above 200 nM, the stiffness increased steeply with [Ca2+]. The data fitted accurately to the sum of two sigmoids (Hill functions): (1) at [Ca2+] < 200 nM the stiffness decreased with [Ca2+] (EC50 = 160 ± 13 nM; n = −2.6±0.7) and (2) at [Ca2+] > 200 nM, stiffness increased with [Ca2+] (EC50 = 3.4±0.3 μM; n = 2.1±0.2) due to attachment of cross-bridges. From these results, it was possible to reproduce accurately the time course of diastolic stiffness observed in intact trabeculae and to predict the effect on stiffness of a spontaneous elevation of the diastolic [Ca2+]. Identical stiffness measurements were performed in 4 skinned preparations exposed to a cloned fragment of titin (Ti I-II) which has been shown to exhibit a strong interaction with F-actin in vitro. It was anticipated that Ti I-II would compete with endogenous titin for the same binding site on actin in the I-band. Below 200 nM, Ti I-II (2 μM) eliminated the Ca2+-dependence of stiffness. These results are consistent with the hypothesis that the Ca2+-sensitivity of the sarcomeres at [Ca2+] < 200 nM, i.e. where the myocytes in intact muscle operate during diastole, involves an association between titin molecules and the thin filament.  相似文献   

16.
The intracellular free Ca2+ ion concentration ([Ca2+]i) was measured using fura-2 microspec-trofluorimetry in individual rat pancreatic β-cells prepared by enzymatic digestion and fluorescence-activated cell sorting. The mean basal concentration of [Ca2+]i in β-cells in the presence of 4.4 mM glucose and 1.8 mM Ca2+ was 112±1.6 nM (n=207). The action of acetylcholine (ACh) was concentration-dependent, and raising the concentration resulted in [Ca2+]i spikes of increasing amplitude and duration in some, but not all of the β-cells. In addition, the β-cells demonstrated variable sensitivity to ACh. The increases in [Ca2+]i were rapid, transient and were blocked by atropine at 10-6M. A brief exposure to 50 mM K+ resulted in a transient increase in [Ca2+]i similar to that induced by ACh, but resistant to atropine. A high concentration of ACh (100μL 10-4M or 10-3M) induced [Ca2+]i oscillations in 11 out of 57 β-cells in the presence of 4.4 mM glucose. Using calcium channel blockers and Ca2+ free medium, the source of the increase in [Ca2+]i was deduced to be from extracellular spaces. Changing the temperature from 22 to 37°C did not affect the action of ACh on [Ca2+]i. These data strongly suggest that ACh exerted a direct action on [Ca2+]i in normal rat pancreatic β-cells and support a role for Ca2+ as a second messenger in the action of ACh.  相似文献   

17.
James G. McCormack   《FEBS letters》1985,180(2):259-264
The effects of intramitochondrial Ca2+ on the activities of the Ca2+-sensitive intramitochondrial enzymes, (i) pyruvate dehydrogenase (PDH) phosphate phosphatase, and (ii) oxoglutarate dehydrogenase (OGDH), were investigated in intact rat liver mitochondria by measuring (i) the amount of active PDH (PDHa) and (ii) the rate of decarboxylation of -[1-14C]oxoglutarate (at non-saturating [oxoglutarate]), at different concentrations of extramitochondrial Ca2+. In the presence of Na2+ and Mg2+, both PDH and OGDH could be activated by increases in extramitochondrial [Ca2+] within the expected physiological range (0.05–5 μM). When liver mitochondria were prepared from rats treated with adrenaline, and then incubated in Na-free media containing EGTA, both PDH and OGDH activities were found to be enhanced. Evidence is presented that the activation of these enzymes by adrenaline is brought about by a mechanism involving increases in intramitochondrial [Ca2+].  相似文献   

18.
Luis Vaca 《FEBS letters》1996,390(3):289-293
Utilizing the whole-cell configuration of the patch-clamp technique the effect of calmodulin (CaM) on thapsigargin-induced Ca2+ current has been studied. Addition of several concentrations of CaM to the patch pipette induced concentration-dependent inhibition of thapsigargin-induced Ca2+ current in bovine aortic endothelial cells. The effect of CaM was Ca2+ dependent and was not observed when the intracellular Ca2+ was buffered to 1 nM with EGTA. CaM produced two major effects on the thapsigargin-induced Ca2+ current. First CaM slow down activation of the current by thapsigargin from a control value of 16 ± 5 to 31 ± 6 s with 1 μM CaM in the pipette solution. The second effect of CaM was to reduce the current amplitude in a concentration-dependent manner. The inhibition of Ca2+ current was observed at the peak of the current and at the sustained current level. The reduction of current at the sustained level was observed 15–20 s after onset of the thapsigargin response. The half inhibitory concentration determined from these experiments was 0.1 μM. These results indicate that CaM can modulate thapsigargin-induced Ca2+ current in this endothelium, suggesting a possible role for CaM in the regulation of store-operated Ca2+ influx.  相似文献   

19.
Oxidative stress and Mrp2 internalization   总被引:2,自引:0,他引:2  
Oxidative stress in the liver is sometimes accompanied by cholestasis. We have described the internalization of multidrug resistance-associated protein 2/ATP-binding cassette transporter family 2 (Mrp2/Abcc2), a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress in rat liver. However, the signaling pathway and regulatory molecules have not been investigated. In the present study, we investigated the mechanism of EA-induced Mrp2 internalization using isolated rat hepatocyte couplets (IRCHs). The Mrp2 index, defined as the ratio of Mrp2-positive canalicular membrane staining in IRCHs per number of cell nuclei, was significantly reduced by treatment with EA. This reduction was abolished by a nonspecific protein kinase C (PKC) inhibitor Gö6850, a Ca2+ chelator, EGTA, but not by a protein kinase A (PKA)-selective inhibitor, a Ca2+-dependent conventional PKC (cPKC) inhibitor Gö6976, or a protein kinase G (PKG) inhibitor (1 μM). Moreover, an increase in the intracellular Ca2+ level and NO release into medium were observed shortly after the EA treatment. Both of these increases, as well as Mrp2 internalization, were completely blocked by EGTA. In conclusion, EA produced a reduction in GSH, Ca2+ elevation, NO production, and nPKC activation in a sequential manner, finally leading to Mrp2 internalization.  相似文献   

20.
The plasma membrane Ca2+ ATPase (PMCA) is an important regulator of free intracellular calcium, with dynamic regulation in the rat mammary gland during lactation. Recent studies suggest that Ca2+ plays a role in cellular proliferation. To determine if PMCA expression is altered in tumorigenesis, we compared relative levels of PMCA1 mRNA. We found that the relative expression of PMCA1 mRNA is increased, by approximately 270% and 170%, in MCF-7 and MDA-MB-231 human breast cancer cell lines deprived of serum for 72 h, respectively, compared to the similarly treated MCF-10A human mammary gland epithelial cell line. Characterization of PMCA mRNA isoforms revealed that PMCA1b and PMCA4 mRNA are expressed in MCF-7, MDA-MB-231, SK-BR-3, ZR-75-1 and BT-483 breast cancer cell lines. We also detected PMCA2 mRNA expression in all the breast cancer cell lines examined. However, PMCA3 mRNA was only detected in BT-483 cells. Our results suggest that PMCA expression may be altered in breast cancer cell lines, suggesting altered Ca2+ regulation in these cell lines. Our results also indicate that breast cancer cell lines can express mRNAs for a variety PMCA isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号