首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudomonas aeruginosa, a human pathogen capable of forming biofilm and contaminating medical settings, is responsible for 65% mortality in the hospitals all over the world. This study was undertaken to isolate lytic phages against biofilm forming Ps. aeruginosa hospital isolates and to use them for in vitro management of biofilms in the microtiter plate. Multidrug resistant strains of Ps. aeruginosa were isolated from the hospital environment in and around Pimpri-Chinchwad, Maharashtra by standard microbiological methods. Lytic phages against these strains were isolated from the Pavana river water by double agar layer plaque assay method. A wide host range phage bacterial virus Ps. aeruginosa phage (BVPaP-3) was selected. Electron microscopy revealed that BVPaP-3 phage is a T7-like phage and is a relative of phage species gh-1. A phage at MOI-0.001 could prevent biofilm formation by Ps. aeruginosa hospital strain-6(HS6) on the pegs within 24 h. It could also disperse pre-formed biofilms of all hospital isolates (HS1–HS6) on the pegs within 24 h. Dispersion of biofilm was studied by monitoring log percent reduction in cfu and log percent increase in pfu of respective bacterium and phage on the peg as well as in the well. Scanning electron microscopy confirmed that phage BVPaP-3 indeed causes biofilm reduction and bacterial cell killing. Laboratory studies prove that BVPaP-3 is a highly efficient phage in preventing and dispersing biofilms of Ps. aeruginosa. Phage BVPaP-3 can be used as biological disinfectant to control biofilm problem in medical devices.  相似文献   

2.
The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy.  相似文献   

3.
A group of 12 Pseudomonas aeruginosa virulent bacteriophages of different origin scored with regard to the plaque phenotype are assigned to PB1-like species based on the similarity in respect to morphology of particles and high DNA homology. Phages differ in restriction profile and the set of capsid major proteins. For the purpose of studying adsorption properties of these phages, 20 random spontaneous mutants of P. aeruginosa PAO1 with the disturbed adsorption placed in two groups were isolated. Mutants of the first group completely lost the ability to adsorb all phages of this species. It is assumed that their adsorption receptors are functionally inactive or lost at all, because the attempt to isolate phage mutants or detect natural phages of PB1 species capable of overcoming resistance of these bacteria failed. The second group includes five bacterial mutants resistant to the majority of phages belonging to species PB1. These mutants maintain the vigorous growth of phage SN and poor growth of phage 9/3, which forms turbid plaques with low efficiency of plating. In the background of weak growth, phage 9/3 yields plaques that grew well. The examination of the progeny of phage 9/3, which can grow on these bacteria, showed that its DNA differed from DNA of the original phage 9/3 by restriction profile and is identical to DNA of phage PB1 with regard to this trait. Data supported a suggestion that this phage variant resulted from recombination of phage 9/3 DNA with the locus of P. aeruginosa PAO1 genome encoding the bacteriocinogenic factor R. However, this variant of phage 9/3 did not manifest the ability to grow on phage-resistant mutants of the first group. Possible reasons for the difference between phages 9/3 or SN and the remaining phages of PB1 species are discussed. A preliminary formal scheme of the modular structure for adsorption receptors on the surface of P. aeruginosa PAO1 bacteria was constructed based on the analysis of growth of some other phage species on adsorption mutants of the first type.  相似文献   

4.
In recent years, antimicrobial-resistant Pseudomonas aeruginosa strains have increased in the veterinary field. Therefore, phage therapy has received significant attention as an approach for overcoming antimicrobial resistance. In this context, we isolated and characterized four Pseudomonas bacteriophages. Phylogenetic analysis showed that the isolated phages are novel Myoviridae Pbunavirus PB1-like phages with ØR12 belonging to a different clade compared with the other three. These phages had distinct lytic activity against 22 P. aeruginosa veterinary isolates. The phage cocktail composed from the PB1-like phages clearly inhibited the occurrence of the phage-resistant variant, suggesting that these phages could be useful in phage therapy.  相似文献   

5.
Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively), high burst size (125 and 145, respectively), stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.  相似文献   

6.
Bacteriophages (phages) belonging to the family Podoviridae genus N4‐like viruses have been used as therapeutic agent in phage therapy against Pseudomonas aeruginosa infections. P. aeruginosa phage KPP21 was isolated in Japan, and phylogenetically investigated the phages belonging to this viral genus. Morphological and genetic analyses confirmed that phage KPP21 belongs to the family Podoviridae genus N4‐like viruses. Moreover, phylogenetic analyses based on putative DNA polymerase and major virion protein showed that P. aeruginosa phages belonging to the genus N4‐like viruses are separated into two lineages and that phage KPP21 is in the same clade as phage LUZ7.  相似文献   

7.

Background

Bacteriophages that infect the opportunistic pathogen Pseudomonas aeruginosa have been classified into several groups. One of them, which includes temperate phage particles with icosahedral heads and long flexible tails, bears genomes whose architecture and replication mechanism, but not their nucleotide sequences, are like those of coliphage Mu. By comparing the genomic sequences of this group of P. aeruginosa phages one could draw conclusions about their ontogeny and evolution.

Results

Two newly isolated Mu-like phages of P. aeruginosa are described and their genomes sequenced and compared with those available in the public data banks. The genome sequences of the two phages are similar to each other and to those of a group of P. aeruginosa transposable phages. Comparing twelve of these genomes revealed a common genomic architecture in the group. Each phage genome had numerous genes with homologues in all the other genomes and a set of variable genes specific for each genome. The first group, which comprised most of the genes with assigned functions, was named “core genome”, and the second group, containing mostly short ORFs without assigned functions was called “accessory genome”. Like in other phage groups, variable genes are confined to specific regions in the genome.

Conclusion

Based on the known and inferred functions for some of the variable genes of the phages analyzed here, they appear to confer selective advantages for the phage survival under particular host conditions. We speculate that phages have developed a mechanism for horizontally acquiring genes to incorporate them at specific loci in the genome that help phage adaptation to the selective pressures imposed by the host.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1146) contains supplementary material, which is available to authorized users.  相似文献   

8.
Study of two recently isolated giant bacteriophages Lu11 and OBP that are active on Pseudomonas putida var. Manila and Pseudomonas fluorescens, respectively, demonstrated their similarity in morphotype, genome size, and size of phage particles, with giant bacteriophages of Pseudomonas aeruginosa assigned to the supergroup of ?KZ-like phages of the family Myoviridae. This supergroup was designated in this manner according to the best studied phage ?KZ that belongs to the species of this group widely distributed in nature. Comparison of major polypeptide sizes of mature particles suggests similarity of certain proteins in the phages examined. In OBP particles visualized with an electron microscope, an “inner body” was detected, which points to specific DNA package intrinsic to phages of ?KZ group. In the meantime, phages Lu11 and OBP do not exhibit resemblance among themselves or with any of earlier described ?KZ-like phages in respect to detectable DNA homology. Note that phage Lu11 of P. putida var. Manila exhibits very slight homology with phage Lin68 of the family of P. aeruginosa ?KZ-like phages detected only in blot hybridization. This suggests the possible involvement of these phages in interspecies recombination (“gene shuffling”) between phages of various bacterial species. Results of partial sequencing of phage genomes confirmed the phylogenetic relatedness of phage OBP to phages of the ?KZ supergroup, whereas phage Lu11 most probably belongs to a novel species that is not a member of supergroup ?KZ composition. The results of the study are discussed in terms of the evolution of these phages.  相似文献   

9.
Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings.  相似文献   

10.
Aims: To examine effects of various environmental factors on adsorption and inactivation of Pseudomonas aeruginosa‐specific phages: δ (family Podoviridae), J‐1, σ‐1 and 001A (family Siphoviridae) and their ability to inhibit bacterial growth and biofilm formation. Methods and Results: The phages examined in the study were clonally different, as revealed by RFLP. The temperature in the range 7–44°C had no influence on the adsorption of Podoviridae, but did affect Siphoviridae adsorption, particularly 001A. All phages were significantly stable at pH 5–9, and phages δ and 001A even at pH 3. Most of the examined carbohydrates and exopolysaccharides of the original host efficiently inactivated phage δ, while phages σ‐1 and J‐1 were inactivated considerably only by the amino acid alanine. Silver nitrate efficiently inactivated all the phages, while Siphoviridae were more resistant to povidone‐iodine. Serum of nonimmunized rats had no influence on phage inactivation and adsorption. Only phage δ showed ability to effectively inhibit in vitro bacterial growth and biofilm formation. Conclusions: The examined environmental parameters can significantly influence the adsorption and viability of Ps. aeruginosa‐specific phages. The phage δ is a good candidate for biocontrol of Ps. aeruginosa. Significance and Impact of the Study: The study provides important data on Ps. aeruginosa‐specific phage adsorption, inactivation and in vitro lytic efficacy.  相似文献   

11.
Bacteriophages are emerging as strong candidates for combating bacterial biofilms. However, reports indicating that host populations can, in some cases, respond to phage predation by an increase in biofilm formation are of concern. This study investigates whether phage predation can enhance the formation of biofilm and if so, if this phenomenon is governed by the emergence of phage-resistance or by non-evolutionary mechanisms (eg spatial refuge). Single-species biofilms of three bacterial pathogens (Pseudomonas aeruginosa, Salmonella enterica serotype Typhimurium, and Staphylococcus aureus) were pretreated and post-treated with species-specific phages. Some of the phage treatments resulted in an increase in the levels of biofilm of their host. It is proposed that the phenotypic change brought about by acquiring phage resistance is the main reason for the increase in the level of biofilm of P. aeruginosa. For biofilms of S. aureus and S. enterica Typhimurium, although resistance was detected, increased formation of biofilm appeared to be a result of non-evolutionary mechanisms.  相似文献   

12.
Pseudomonas aeruginosa is an opportunistic human pathogen that forms highly stable communities – biofilms, which contribute to the establishment and maintenance of infections. The biofilm state and intrinsic/acquired bacterial resistance mechanisms contribute to resistance/tolerance to antibiotics that is frequently observed in P. aeruginosa isolates. Here we describe the isolation and characterization of six novel lytic bacteriophages: viruses that infect bacteria, which together efficiently infect and kill a wide range of P. aeruginosa clinical isolates. The phages were used to formulate a cocktail with the potential to eliminate P. aeruginosa PAO1 planktonic cultures. Two biofilm models were studied, one static and one dynamic, and the phage cocktail was assessed for its ability to reduce and disperse the biofilm biomass. For the static model, after 4 h of contact with the phage suspension (MOI 10) more than 95% of biofilm biomass was eliminated. In the flow biofilm model, a slower rate of activity by the phage was observed, but 48 h after addition of the phage cocktail the biofilm was dispersed, with most cells eliminated (> 4 logs) comparing with the control. This cocktail has the potential for development as a therapeutic to control P. aeruginosa infections, which are predominantly biofilm centred.  相似文献   

13.
The virulent Pseudomonas aeruginosa bacteriophage SN belongs to the PB1-like species of the Myoviridae family. The comparatively small (66,391 bp) DNA genome of this phage encodes 89 predicted open reading frames and the proteome involves more than 20 structural proteins. A 3D model of the phage capsid to approximately 18 Å resolution reveals certain peculiarities of capsomer structure typical of only this bacteriophage species. In the present work recombinant structural proteins SN gp22 and gp29 were expressed and purified; and specific polyclonal antibodies were obtained. Immuno-electron microscopy of purified phage SN using secondary gold-conjugated antibodies has revealed that gp29 forms a phage sheath, and gp22 decorates the capsid. Precise identification of multicopy major capsid proteins is essential for subsequent construction of gene-engineered phages bearing non-native peptides on their surfaces (phage display).  相似文献   

14.
Recently, lytic bacteriophages (phages) have been focused on treating bacterial infectious diseases. We investigated the protective efficacy of a novel Pseudomonas aeruginosa phage, PA1Ø, in normal and neutropenic mice. A lethal dose of P. aeruginosa PAO1 was administered via the intraperitoneal route and a single dose of PA1Ø with different multiplicities of infection (MOI) was treated into infected mice. Immunocompetent mice infected with P. aeruginosa PAO1 were successfully protected by PA1Ø of 1 MOI, 10 MOI or 100 MOI with 80% to 100% survival rate. No viable bacteria were found in organ samples after 48 h of the phage treatment. Phage clearing patterns were different in the presence or absence of host bacteria but PA1Ø disappeared from all organs after 72 h except spleen in the presence of host bacteria. On the contrary, PA1Ø treatment could not protect neutropenic mice infected with P. aeruginosa PAO1 even though could extend their lives for a short time. In in vitro phage-neutrophil bactericidal test, a stronger bactericidal effect was observed in phage-neutrophil co-treatment than in phage single treatment without neutrophils, suggesting phage-neutrophil co-work is essential for the efficient killing of bacteria in the mouse model. In conclusion, PA1Ø can be possibly utilized in future phage therapy endeavors since it exhibited strong protective effects against virulent P. aeruginosa infection.  相似文献   

15.
The therapeutic effects of bacteriophage (phage) KPP12 in Pseudomonas aeruginosa keratitis were investigated in mice. Morphological analysis showed that phage KPP12 is a member of the family Myoviridae, morphotype A1, and DNA sequence analysis revealed that phage KPP12 is similar to PB1-like viruses. Analysis of the phage KPP12 genome did not identify any genes related to drug resistance, pathogenicity or lysogenicity, and so phage KPP12 may be a good candidate for therapeutic. KPP12 showed a broad host range for P. aeruginosa strains isolated from clinical ophthalmic infections. Inoculation of the scarified cornea with P. aeruginosa caused severe keratitis and eventual corneal perforation. Subsequent single-dose administration of KPP12 eye-drops significantly improved disease outcome, and preserved the structural integrity and transparency of the infected cornea. KPP12 treatment resulted in the suppression of neutrophil infiltration and greatly enhanced bacterial clearance in the infected cornea. These results indicate that bacteriophage eye-drops may be a novel adjunctive or alternative therapeutic agent for the treatment of infectious keratitis secondary to antibiotic-resistant bacteria.  相似文献   

16.

Background

A rapid worldwide increase in the number of human infections caused by the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia is prompting alarm. One potential treatment solution to the current antibiotic resistance dilemma is “phage therapy”, the clinical application of bacteriophages to selectively kill bacteria.

Results

Towards that end, phages DLP1 and DLP2 (vB_SmaS-DLP_1 and vB_SmaS-DLP_2, respectively) were isolated against S. maltophilia strain D1585. Host range analysis for each phage was conducted using 27 clinical S. maltophilia isolates and 11 Pseudomonas aeruginosa strains. Both phages exhibit unusually broad host ranges capable of infecting bacteria across taxonomic orders. Transmission electron microscopy of the phage DLP1 and DLP2 morphology reveals that they belong to the Siphoviridae family of bacteriophages. Restriction fragment length polymorphism analysis and complete genome sequencing and analysis indicates that phages DLP1 and DLP2 are closely related but different phages, sharing 96.7 % identity over 97.2 % of their genomes. These two phages are also related to P. aeruginosa phages vB_Pae-Kakheti_25 (PA25), PA73, and vB_PaeS_SCH_Ab26 (Ab26) and more distantly related to Burkholderia cepacia complex phage KL1, which together make up a taxonomic sub-family. Phages DLP1 and DLP2 exhibited significant differences in host ranges and growth kinetics.

Conclusions

The isolation and characterization of phages able to infect two completely different species of bacteria is an exciting discovery, as phages typically can only infect related bacterial species, and rarely infect bacteria across taxonomic families, let alone across taxonomic orders.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1848-y) contains supplementary material, which is available to authorized users.  相似文献   

17.
The complete sequence of the 46,267 bp genome of the lytic bacteriophage tf specific to Pseudomonas putida PpG1 has been determined. The phage genome has two sets of convergently transcribed genes and 186 bp long direct terminal repeats. The overall genomic architecture of the tf phage is similar to that of the previously described Pseudomonas aeruginosa phages PaP3, LUZ24 and phiMR299-2, and 39 out of the 72 products of predicted tf open reading frames have orthologs in these phages. Accordingly, tf was classified as belonging to the LUZ24-like bacteriophage group. However, taking into account very low homology levels between tf DNA and that of the other phages, tf should be considered as an evolutionary divergent member of the group. Two distinguishing features not reported for other members of the group were found in the tf genome. Firstly, a unique end structure – a blunt right end and a 4-nucleotide 3′-protruding left end – was observed. Secondly, 14 single-chain interruptions (nicks) were found in the top strand of the tf DNA. All nicks were mapped within a consensus sequence 5′-TACT/RTGMC-3′. Two nicks were analyzed in detail and were shown to be present in more than 90% of the phage population. Although localized nicks were previously found only in the DNA of T5-like and phiKMV-like phages, it seems increasingly likely that this enigmatic structural feature is common to various other bacteriophages.  相似文献   

18.
The objective of this study was to investigate the potential of using phages as a therapy against hemorrhagic pneumonia in mink both in vitro and in vivo. Five Pseudomonas aeruginosa (P. aeruginosa) strains were isolated from lungs of mink with suspected hemorrhagic pneumonia and their identity was confirmed by morphological observation and 16S rDNA sequence analysis. Compared to P. aeruginosa strains isolated from mink with hemorrhagic pneumonia in 2002, these isolates were more resistant to antibiotics selected. A lytic phage vB_PaeP_PPA-ABTNL (PPA-ABTNL) of the Podoviridae family was isolated from hospital sewage using a P. aeruginosa isolate as host, showing broad host range against P. aeruginosa. A one-step growth curve analysis of PPA-ABTNL revealed eclipse and latent periods of 20 and 35 min, respectively, with a burst size of about 110 PFU per infected cell. Phage PPA-ABTNL significantly reduced the growth of P. aeruginosa isolates in vitro. The genome of PPA-ABTNL was 43,227 bp (62.4% G+C) containing 54 open reading frames and lacked regions encoding known virulence factors, integration-related proteins and antibiotic resistance determinants. Genome architecture analysis showed that PPA-ABTNL belonged to the “phiKMV-like Viruses” group. A repeated dose inhalational toxicity study using PPA-ABTNL crude preparation was conducted in mice and no significantly abnormal histological changes, morbidity or mortality were observed. There was no indication of any potential risk associated with using PPA-ABTNL as a therapeutic agent. The results of a curative treatment experiment demonstrated that atomization by ultrasonic treatment could efficiently deliver phage to the lungs of mink and a dose of 10 multiplicity of infection was optimal for treating mink hemorrhagic pneumonia. Our work demonstrated the potential for phage to fight P. aeruginosa involved in mink lung infections when administered by means of ultrasonic nebulization.  相似文献   

19.

Background  

Pseudomonas aeruginosa causes lung infections in patients suffering from the genetic disorder Cystic Fibrosis (CF). Once a chronic lung infection is established, P. aeruginosa cannot be eradicated by antibiotic treatment. Phage therapy is an alternative to treat these chronic P. aeruginosa infections. However, little is known about the factors which influence phage infection of P. aeruginosa under infection conditions and suitable broad host range phages.  相似文献   

20.
The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号