共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In addition to suggesting that fatty acids are endogenous ligands, our recent crystal structure of HNF-4alpha showed an unusual degree of structural flexibility in the AF-2 domain (helix alpha12). Although every molecule contained a fatty acid within its ligand binding domain, one molecule in each homodimer was in an open inactive conformation with alpha12 fully extended and colinear with alpha10. By contrast, the second molecule in each homodimer was in a closed conformation with alpha12 folded against the body of the domain in what is widely considered to be the active state. This indicates that although ligand binding is necessary, it is not sufficient to induce an activating structural transition in HNF-4alpha as is commonly suggested to occur for nuclear receptors. To further assess potential mechanisms of activation, we have solved a structure of human HNF-4alpha bound to both fatty acid ligand and a coactivator sequence derived from SRC-1. The mode of coactivator binding is similar to that observed for other nuclear receptors, and in this case, all of the molecules adopt the closed active conformation. We conclude that for HNF-4alpha, coactivator rather than ligand binding locks the active conformation. 相似文献
6.
Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. 总被引:11,自引:0,他引:11
Patrick Delmas Hideki Nomura Xiaogang Li Montaha Lakkis Ying Luo Yoav Segal Jose M Fernández-Fernández Peter Harris Anna-Maria Frischauf David A Brown Jing Zhou 《The Journal of biological chemistry》2002,277(13):11276-11283
Polycystin-1 (PC1), a 4,303-amino acid integral membrane protein of unknown function, interacts with polycystin-2 (PC2), a 968-amino acid alpha-type channel subunit. Mutations in their respective genes cause autosomal dominant polycystic kidney disease. Using a novel heterologous expression system and Ca(2+) and K(+) channels as functional biosensors, we found that full-length PC1 functioned as a constitutive activator of G(i/o)-type but not G(q)-type G-proteins and modulated the activity of Ca(2+) and K(+) channels via the release of Gbetagamma subunits. PC1 lacking the N-terminal 1811 residues replicated the effects of full-length PC1. These effects were independent of regulators of G-protein signaling proteins and were lost in PC1 mutants lacking a putative G-protein binding site. Co-expression with full-length PC2, but not a C-terminal truncation mutant, abrogated the effects of PC1. Our data provide the first experimental evidence that full-length PC1 acts as an untraditional G-protein-coupled receptor, activity of which is physically regulated by PC2. Thus, our study strongly suggests that mutations in PC1 or PC2 that distort the polycystin complex would initiate abnormal G-protein signaling in autosomal dominant polycystic kidney disease. 相似文献
7.
8.
9.
10.
11.
Control of transcription activation by steroid hormone receptors. 总被引:11,自引:0,他引:11
H Gronemeyer 《FASEB journal》1992,6(8):2524-2529
12.
13.
Cho S Kagan BL Blackford JA Szapary D Simons SS 《Molecular endocrinology (Baltimore, Md.)》2005,19(2):290-311
14.
Chen A Gao ZG Barak D Liang BT Jacobson KA 《Biochemical and biophysical research communications》2001,284(3):596-601
The objective of this study was to create constitutively active mutant human A(3) adenosine receptors (ARs) using single amino acid replacements, based on findings from other G protein-coupled receptors. A(3) ARs mutated in transmembrane helical domains (TMs) 1, 3, 6, and 7 were expressed in COS-7 cells and subjected to agonist radioligand binding and phospholipase C (PLC) and adenylyl cyclase (AC) assays. Three mutant receptors, A229E in TM6 and R108A and R108K in the DRY motif of TM3, were found to be constitutively active in both functional assays. The potency of the A(3) agonist Cl-IB-MECA (1-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide) in PLC activation was enhanced by at least an order of magnitude over wild type (EC(50) 951 nM) in R108A and A229E mutant receptors. Cl-IB-MECA was much less potent (>10-fold) in C88F, Y109F, and Y282F and mutants or inactive following double mutation of the DRY motif. The degree of constitutive activation was more pronounced for the AC signaling pathway than for the PLC signaling pathway. The results indicated that specific locations within the TMs proximal to the cytosolic region were responsible for constraining the receptor in a G protein-uncoupled conformation. 相似文献
15.
16.
17.
Inhibition of DNA binding by human estrogen-related receptor 2 and estrogen receptor alpha with minor groove binding polyamides 总被引:1,自引:0,他引:1
Gearhart MD Dickinson L Ehley J Melander C Dervan PB Wright PE Gottesfeld JM 《Biochemistry》2005,44(11):4196-4203
Human estrogen-related receptor 2 (hERR2, ESRRB, ERRbeta, NR3B2) belongs to a class of nuclear receptors that bind DNA through sequence-specific interactions with a 5'-AGGTCA-3' estrogen response element (ERE) half-site in the major groove and an upstream 5'-TNA-3' site in the minor groove. This minor groove interaction is mediated by a C-terminal extension (CTE) of the DNA binding domain and is unique to the estrogen-related receptors. We have used synthetic pyrrole-imidazole polyamides, which bind specific sequences in the minor groove, to demonstrate that DNA binding by hERR2 is sensitive to the presence of polyamides in both the upstream minor groove CTE site and the minor groove of the ERE half-site. Thus, polyamides can inhibit hERR2 by two mechanisms, by direct steric blockage of minor groove DNA contacts mediated by the CTE and by changing the helical geometry of DNA such that major groove interactions are weakened. To confirm the generality of the latter approach, we show that the dimeric human estrogen receptor alpha (hERalpha, ESR1, NR3A1), which binds in the major groove of the ERE, can be inhibited by a polyamide bound in the opposing minor groove of the ERE. These results highlight two mechanisms for inhibition of protein-DNA interactions and extend the repertoire of DNA recognition motifs that can be inhibited by polyamides. These molecules may thus be useful for controlling expression of hERR2- or hERalpha-responsive genes. 相似文献
18.
Toth JI Datta S Athanikar JN Freedman LP Osborne TF 《Molecular and cellular biology》2004,24(18):8288-8300
19.
20.