首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
The genes of the BanI restriction-modification system specific for GGPyPuCC were cloned from the chromosomal DNA of Bacillus aneurinolyticus IAM1077, and the coding regions were assigned on the nucleotide sequence on the basis of the N-terminal amino acid sequences and molecular weights of the enzymes. The restriction and modification genes coded for polypeptides with calculated molecular weights of 39,841 and 42,637, respectively. Both the enzymes were coded by the same DNA strand. The restriction gene was located upstream of the methylase gene, separated by 21 bp. The cloned genes were significantly expressed in E. coli cells, so that the respective enzymes could be purified to homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration indicated that the catalytically active form of the endonuclease was dimeric and that of the methylase was monomeric. Comparison of the amino acid sequences revealed no significant homology between the endonuclease and methylase, though both enzymes recognize the same target sequence. Sequence comparison with other related enzymes indicated that BanI methylase contains sequences common to cytosine-specific methylases.  相似文献   

2.
A Kiss  F Baldauf 《Gene》1983,21(1-2):111-119
Two modification methylase genes of Bacillus subtilis R were cloned in Escherichia coli by using a selection procedure which is based on the expression of these genes. Both genes code for DNA-methyltransferases which render the DNA of the cloning host E. coli HB101 insensitive to the BspRI (5'-GGCC) endonuclease of Bacillus sphaericus R. One of the cloned genes is part of the restriction-modification (RM) system BsuRI of B. subtilis R with specificity for 5'-GGCC. The other one is associated with the lysogenizing phage SP beta B and produces the methylase M.BsuP beta BI with specificity for 5'-GGCC. The fragment carrying the SP beta B-derived gene also directs the synthesis in E. coli of a third methylase activity (M.BsuP beta BII), which protects the host DNA against HpaII and MspI cleavage within the sequence 5'-CCGG. Indirect evidence suggests that the two SP beta B modification activities are encoded by the same gene. No cross-hybridization was detected either between the M.BsuRI and M.BsuP beta B genes or between these and the modification methylase gene of B. sphaericus R, which codes for the enzyme M.BspRI with 5'-GGCC specificity.  相似文献   

3.
Two genes from the total genomic DNA of dairy starter culture Lactococcus lactis subsp. cremoris UC503, encoding ScrFI modification enzymes, have been cloned and expressed in Escherichia coli. No homology between the two methylase genes was detected, and inverse polymerase chain reaction of flanking chromosomal DNA indicated that both were linked on the Lactococcus genome. Neither clone encoded the cognate endonuclease. The DNA sequence of one of the methylase genes (encoded by pCI931M) was determined and consisted of an open reading frame 1,170 bp long, which could encode a protein of 389 amino acids (M(r), 44.5). The amino acid sequence contained the highly characteristic motifs of an m5C methylase. Extensive regions of homology were observed with the methylases of NlaX, EcoRII, and Dcm.  相似文献   

4.
5.
Escherichia coli strains K12 and B, and a new strain designated D, each encode a characteristic restriction and modification enzyme. These enzymes (EcoK, EcoB and presumably EcoD) comprise three subunits of which one, that encoded by the so-called specificity gene (hsdS), is responsible for recognition of the DNA sequence specific to that system. The other two subunits, encoded by hsdR and hsdM, are interchangeable between systems, and the available molecular evidence suggests that the hsdR and hsdM genes are highly conserved. The DNA sequence of a segment of the hsd region that includes the hsdS gene has been determined for each of the three strains. The hsdS gene varies in length from 1335 to 1425 base-pairs and the only regions showing obvious homology, one of about 100 base-pairs and a second of about 250 base-pairs, are highly conserved. The remainder of each hsd S gene shares little, or no, homology with either of the other related specificity genes. Thus, the specificity subunits, though components of a family of closely related enzymes with very similar functions, have remarkably dissimilar primary structure.  相似文献   

6.
We have purified the type III restriction enzymes EcoP1 and EcoP15 to homogeneity from bacteria that contain the structural genes for the enzymes cloned on small, multicopy plasmids and which overproduce the enzymes. Both of the enzymes contain two different subunits. The molecular weights of the subunits are the same for both enzymes and antibodies prepared against one enzyme cross-react with both subunits of the other. Bacteria containing a plasmid derivative in which a large part of one of the structural genes has been deleted have a restriction- modification+ phenotype and contain only the smaller of the two subunits. This subunit therefore must be the one that both recognizes the specific DNA sequence and methylates it in the modification reaction (the restriction enzyme itself also acts as a modification methylase). We have purified the P1 and P15 modification subunits from these deletion derivatives and have shown that in vitro they have the expected properties: they are sequence-specific modification methylases. In addition, we have demonstrated that strains carrying the full restriction/modification system also contain a pool of free modification subunits that might be responsible for in vivo modification.  相似文献   

7.
Cloning and expression of the MspI restriction and modification genes   总被引:9,自引:0,他引:9  
D O Nwankwo  G G Wilson 《Gene》1988,64(1):1-8
The genes for the MspI restriction (R) and modification enzymes (recognition sequence CCGG) have been cloned into Escherichia coli using the vector pBR322. Clones carrying both genes have been isolated from libraries prepared with EcoRI, HindIII and BamHI. The smallest fragment that encodes both activities is a 3.6-kb HindIII fragment. Plasmids purified from the clones are fully resistant to digestion by MspI, indicating that the modification gene is functional in E. coli. The clones remain sensitive to phage infection, however, indicating that the endonuclease is dysfunctional. When the R gene is brought under the control of the inducible leftward promoter from phage lambda, the level of endonuclease increases and the level of methylase decreases, suggesting that the genes are transcribed in opposite directions.  相似文献   

8.
Cloning the BamHI restriction modification system.   总被引:11,自引:7,他引:4       下载免费PDF全文
BamHI, a Type II restriction modification system from Bacillus amyloliquefaciensH recognizes the sequence GGATCC. The methylase and endonuclease genes have been cloned into E. coli in separate steps; the clone is able to restrict unmodified phage. Although within the clone the methylase and endonuclease genes are present on the same pACYC184 vector, the system can be maintained in E. coli only with an additional copy of the methylase gene present on a separate vector. The initial selection for BamHI methylase activity also yielded a second BamHI methylase gene which is not homologous in DNA sequence and hybridizes to different genomic restriction fragments than does the endonuclease-linked methylase gene. Finally, the interaction of the BamHI system with the E. coli Dam and the Mcr A and B functions, have been studied and are reported here.  相似文献   

9.
The genes encoding the MspI restriction modification system, which recognizes the sequence 5' CCGG, have been cloned into pUC9. Selection was based on expression of the cloned methylase gene which renders plasmid DNA insensitive to MspI cleavage in vitro. Initially, an insert of 15 kb was obtained which, upon subcloning, yielded a 3 kb EcoRI to HindIII insert, carrying the genes for both the methylase and the restriction enzyme. This insert has been sequenced. Based upon the sequence, together with appropriate subclones, it is shown that the two genes are transcribed divergently with the methylase gene encoding a polypeptide of 418 amino acids, while the restriction enzyme is composed of 262 amino acids. Comparison of the sequence of the MspI methylase with other cytosine methylases shows a striking degree of similarity. Especially noteworthy is the high degree of similarity with the HhaI and EcoRII methylases.  相似文献   

10.
The genes, encoding the restriction endonuclease and modification methylase EcoRV have been cloned from the natural plasmid pLG13 into pBR32 derivative vector pIL233. A resultant clone, expressing both enzyme activities, was used as a source of DNA for sequencing these genes by a procedure, that employed construction of deletion derivatives used to locate borders (by means of a functional test) and to sequence ca. 300 bp near the deletion breakpoint. From the sequence data, we infer that the endonuclease, a 29 KDa protein, and the methylase, a 36 KDa protein, are transcribed from a 310 bp intergenic region in opposite directions. There is no apparent homology between the enzymes and genes of the EcoRI and the EcoRV systems. A synthetic decamer, containing the EcoRV endonuclease recognition sequence and a phosphoamide bond at the cleavage point, is not cleaved by the highly purified endonuclease; the unmodified synthetic decamer is cleaved at the same conditions, only that the cleavage occurs to produce a blunt end--GAT/ATC, and not in a place previously reported (GATAT/C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号