首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Studies employing indirect immunofluorescent staining, acrylamide gel electrophoresis of [(35)S]methionine-labeled cellular polypeptides, and RNA-RNA hybridization of [(3)H]uridine-labeled cellular RNA, failed to detect evidence of fowl plague virus infection of BHK cells enucleated with cytochalasin B, although virus-specific polypeptide and RNA synthesis was detected in nucleate BHK cells. The enucleate cells permitted the synthesis of Newcastle disease and vaccinia virus structural proteins. We conclude that influenza virus fails to initiate macromolecular synthesis in enucleate BHK cells, and the role of the nucleus in influenza virus replication is discussed.  相似文献   

2.
The inhibition of protein synthesis in L cells by vesicular stomatitis virus (VSV) requires the synthesis of new protein subsequent to virus infection. However, two mechanisms may be involved in the inhibition of cell protein synthesis by VSV: an initial, multiplicity-dependent, ultraviolet-insensitive inhibition and a progressive, ultraviolet-sensitive inhibition.  相似文献   

3.
Synthesis of the vesicular stomatitis virus membrane matrix protein and the glycoprotein is inhibited to a greater extent than the synthesis of the nucleocapsid protein, the nonstructural protein, and the large protein when the rate of peptide chain initiation is reduced by exposure of vesicular stomatitis virus-infected cells to hypertonic medium. It is concluded that the relative sensitivity of individual viral polypeptide synthesis to hypertonic initiation block is independent of the site of synthesis, i.e., whether on membrane-associated or free polyribosomes.  相似文献   

4.
Infection of L cells with wild-type (L(1)) vesicular stomatitis virus at high or low multiplicities does not result in the production of interferon; however, infection of L cells with low multiplicities of a small-plaque mutant (S(2)) results in the synthesis of large amounts of interferon. In chick embryo (CE) cells, both viruses induce synthesis of interferon; there is no significant multiplicity effect in CE cells. The rate and efficiency of shutoff of macromolecular synthesis in the different host cells is a critical factor in determining the ability of the viruses to induce interferon synthesis. If host ribonucleic acid or protein synthesis is shut off by the virus before the required new ribonucleic acid is transcribed or translated, interferon production does not occur. The relative yield of the two viruses in CE and L cells is not related to the effects of interferon produced during the course of infection.  相似文献   

5.
The growth of vaccinia virus in monolayers of BSC-1 cells enucleated by centrifugation in the presence of cytochalasin B has been studied. No evidence for the production of infectious virus in these cells was obtained, and the production of virus particles was reduced to 8.3% compared with the yield from cytochalasin-treated, uncentrifuged cells. Virus DNA and early and late polypeptides were synthesized with normal timing in enucleate cells, but in reduced amounts; cleavage of structural polypeptide precursors P4a and Px also occurred in enucleate cells. Factories containing immature virus particles were demonstrated in enucleate cells by electron microscopy; these factories were reduced in number and size compared with those found in cytochalasin-treated, uncentrifuged cells.  相似文献   

6.
7.
When mouse L cells are infected for 22 hr with vesicular stomatitis virus (VSV), a ribonucleic acid-containing enveloped virus, greater than 70% of the major histocompatibility antigen (H-2), is no longer detectable by the method of inhibition of immune cytolysis. Infected cells prelabeled with (14)C-glucosamine also show a correspondingly greater loss of trichloroacetic acid-insoluble radioactivity than uninfected cells. The loss of H-2 antigenic activity is not due to the viral inhibition of host cell protein synthesis since cells cultured for 18 hr in the presence of cycloheximide have the same amount of H-2 activity as untreated controls. Also, cells infected with encephalomyocarditis virus, a picornavirus, show no loss of H-2 activity at a time when host cell protein synthesis is completely inhibited. VSV structural proteins associated in vitro with uninfected L-cell plasma membranes do not render H-2 sites inaccessible to the assay. Although antibodies may not combine with all the H-2 antigenic sites on the plasma membrane, anti-H-2 serum reacted with L cells before infection does not prevent a normal infection with VSV. H-2 activity can be detected in virus samples purified from the medium of infected L cells; this virus purified after being mixed with L-cell homogenates shows greater H-2 activity than virus purified after being mixed with HeLa cell homogenates. However, VSV made in HeLa cells shows no H-2 activity when mixed with L-cell homogenates.  相似文献   

8.
Virus infection of murine teratocarcinoma stem cell lines.   总被引:49,自引:0,他引:49  
N M Teich  R A Weiss  G R Martin  D R Lowy 《Cell》1977,12(4):973-982
  相似文献   

9.
Lactic dehydrogenase virus replicated rapidly in monolayers of primary mouse embryo cells and reached a titer of 10(8) mean infective dose per ml within 18 h after infection. Despite the high virus yield, cytopathology was not observed. Examination of the tissue culture media failed to reveal any evidence of interferon, but the virus was found to be as sensitive to mouse interferon as vesicular stomatitis virus. Incubation of mouse embryo cells with actinomycin D markedly inhibited viral replication, whereas cytosine-beta-d-arabinofuranoside and 5-fluorodeoxyuridine had no effect on replication. These findings indicate that new DNA synthesis is not required but suggest that the intact function of cellular DNA may be required for lactic dehydrogenase virus replication.  相似文献   

10.
The effect of interferon on the expression of the vesicular stomatitis virus glycoprotein G gene was examined in simian COS cells transfected with the expression vector pSVGL containing the G gene under the control of the SV40 late promoter. When COS cells were treated with interferon 24 h after transfection, the synthesis of vesicular stomatitis virus G protein was inhibited by about 80% as compared to that in untreated controls. By contrast, under the same conditions, neither the plasmid copy number nor the G gene mRNA levels were detectably affected by interferon treatment. Likewise, the synthesis of simian virus 40 large T-antigen was not inhibited by interferon treatment of transfected COS cells even though the synthesis of vesicular stomatitis virus G protein was markedly inhibited. The residual G protein synthesized in transfected, interferon-treated COS cells appeared to be normally glycosylated.  相似文献   

11.
The glycoprotein, but no other virion protein, of vesicular stomatitis virus was solubilized by the nonionic detergent Triton X-100 in low ionic strength buffer. The solubilized viral glycoprotein induced the synthesis of antibody that formed a single precipitin line with the glycoprotein and that neutralized the infectivity of the virus. The neutralizing activity of the antibody was efficiently blocked by purified glycoprotein.  相似文献   

12.
RNA was isolated from polyribosomes of vesicular stomatitis virus (VSV)-infected cells and tested for its ability to direct protein synthesis in extracts of animal and plant cells. In cell-free, non-preincubated extracts of rabbit reticulocytes, the 28S VSV RNA stimulated synthesis of a protein the size of the vesicular stomatitis virus L protein whereas the 13 to 15S RNA directed synthesis of the VSV M, N, NS, and possibly G proteins. In wheat germ extracts, 13 to 15S RNA also directed synthesis of the N, NS, M, and possibly G proteins. Analysis of extracts labeled with formyl [(35)S]methionine showed that the 28S RNA directed the initiation of synthesis of one protein, whereas the 13 to 15S RNA directed initiation of at least four proteins. It is concluded that the 28S RNA encodes only the L protein, whereas the 13 to 15S RNA is a mixture of species, presumably monocistronic, which code for the four other known vesicular stomatitis virus proteins.  相似文献   

13.
Incubation of Sindbis virus-infected cultures in medium with an ionic strength of 0.105 reduced the virus yield more than 99%. This inhibition was rapidly reversed by exposing the cultures to normal medium: within 20 min the previously inhibited cultures had released as much infectious virus as normal controls had produced during hours of incubation. The following intracellular processes were essentially normal in inhibited, infected monolayers: protein and phospholipid synthesis, the synthesis of infectious viral ribonucleic acid and its incorporation into nucleocapsids, and viral modification of the cell membrane. Accelerated virus production was detected within 20 sec after exposure of inhibited cultures to normal medium. It required an ionic strength greater than 0.145, a pH above 6.7, and a temperature above 21 C. It was not dependent on osmotic pressure, de novo protein synthesis, or a functional energy metabolism. Virus release also occurred in sonic-treated materials of inhibited cells under the same conditions as in living cells. Potential applications of the inhibition to concentration of virus stocks or to obtaining virus in nonphysiological solutions are noted. Preliminary studies with Semiliki Forest virus, Newcastle disease virus, and vesicular stomatitis virus suggest that this phenomenon may be limited to arboviruses.  相似文献   

14.
A temperature sensitive mutant of vesicular stomatitis virus which does not mature properly when grown at 39 degrees C promoted extensive fusion of murine neuroblastoma cells at this nonpermissive temperature. Polykaryocytes apparently formed as a result of fusion from within the cells that requires low doses of infectious virions for its promotion and is dependent on viral protein synthesis. Although 90% of infected N-18 neuroblastoma cells were fused by 15 h after infection, larger polykaryocytes continued to form, leading to an average of 28 nuclei per polykaryocyte as a result of polykaryocytes fusing to each other. Two neuroblastoma cell lines have been observed to undergo fusion, whereas three other cell lines (BHK-21, CHO, and 3T3) were incapable of forming polykaryocytes, suggesting that nervous system-derived cells are particularly susceptible to vesicular stomatitis virus-induced fusion. Although the normal assembly of the protein components of this virus is deficient at 39 degrees C, the G glycoprotein was inserted into the infected cell membranes at this temperature. Two lines of evidence suggest that the expression of G at the cell surface promotes this polykaryocyte formation: (i) inhibition of glycosylation, which may be involved in the migration of the G protein to the cellular plasma membranes, will inhibit the cell fusion reaction; (ii) addition of antiserum, directed toward the purified G glycoprotein, will also inhibit cell fusion.  相似文献   

15.
A cDNA clone containing the entire vesicular stomatitis virus nucleocapsid gene was assembled by fusing portions of two partial clones. When the cDNA clone was inserted into a new general-purpose eucaryotic expression vector and introduced into appropriate host cells, abundant N-protein synthesis ensued. The expressed protein was indistinguishable from authentic N protein produced during vesicular stomatitis virus infections. The recombinant N protein was recognized by a polyclonal antibody and two different monoclonal antibodies and could not be resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis from authentic N. Our results suggest that the recombinant N protein produced in transfected cells rapidly aggregates into high-molecular-weight complexes in the absence of vesicular stomatitis virus genomic RNA.  相似文献   

16.
17.
In mouse Mx+ cells, interferon alpha/beta induces the synthesis of the nuclear Mx protein, whose accumulation is correlated with specific inhibition of influenza viral protein synthesis. When Mx+ mouse cells are microinjected with the monoclonal anti-Mx antibody 2C12, interferon alpha/beta still induces Mx protein, but no longer inhibits efficiently the expression of influenza viral proteins as visualized by immunofluorescent labeling. However, interferon inhibition of an unrelated control virus, vesicular stomatitis virus, remains unchanged. Proteins with homology to mouse Mx protein are found in interferon-treated cells of a variety of mammalian species. In rat cells, for instance, rat interferon alpha/beta induces three Mx proteins which all cross-react with antibody 2C12 but differ in mol. wt and intracellular location, and it protects these cells well against influenza viruses. However, when rat cells are microinjected with antibody 2C12, interferon alpha/beta cannot induce an efficient antiviral state against influenza virus infection, whereas protection against vesicular stomatitis virus is not altered. These results show that both mouse and rat cells require functional Mx proteins for efficient protection against influenza virus. They further demonstrate that microinjection of antibodies is a promising way of elucidating the role of particular interferon-induced proteins in the intact cell.  相似文献   

18.
A method is described for analysis of viral protein synthesis early after infection when minute amounts of viral proteins are effectively concealed by large amounts of produced host-specific proteins. The method is superior to a radioimmune assay, since all virus-induced proteins can be measured independent of their immunological reactivity. Host-specific protein synthesis can be suppressed by infection with fowl plague virus. Addition of actinomycin D 1.25 h postinfection does not prevent this suppression, but it does block effectively the formation of fowl plague virus-specific proteins. Such cells synthesize only small amounts of cellular proteins, as revealed by polyacrylamide electrophoresis. They can be superinfected with several different enveloped viruses, however, without significant diminution of virus yields. In pretreated cells the eclipse is shortened for Semliki Forest virus, Sindbis virus, and vesicular stomatitis virus, but prolonged for Newcastle disease virus. The onset of protein synthesis, specific for the superinfecting virus, could be clearly demonstrated within 1 h after superinfection. At this time, in cells superinfected with Semliki Forest virus, great amounts of NSP 78 (nonstructural protein; molecular weight, 78 × 103) and reduced amounts of the core protein C could be demonstrated. The precursor glycoprotein NSP 68 is followed by a new polypeptide, NSP 65; three proteins with molecular weights exceeding 100 × 103 were observed which are missing later in the infectious cycle. Similar results were obtained after superinfection with Sindbis virus. The formation of a new polypeptide with a molecular weight of about 80 × 103 was detected. After superinfection with vesicular stomatitis virus or Newcastle disease virus the formation of new proteins, characteristic for the early stage of infection, was not observed.  相似文献   

19.
Temperature-sensitive (ts) mutant tsD1 of vesicular stomatitis virus, New Jersey serotype, is the sole representative of complementation group D. Clones derived from this mutant exhibited three different phenotypes with respect to electrophoretic mobility of the G and N polypeptides of the virion in sodium dodecyl sulfate-polyacrylamide gel. Analysis of non-ts pseudorevertants showed that none of the three phenotypes was associated with the temperature sensitivity of mutant tsD1. Additional phenotypes, some also involving the NS polypeptide, appeared during sequential cloning, indicating that mutations were generated at high frequency during replication of tsD1. Furthermore, mutations altering the electrophoretic mobility of the G, N, NS, and M polypeptides were induced in heterologous viruses multiplying in the same cells as tsD1. These heterologous viruses included another complementing ts mutant of vesicular stomatitis virus New Jersey and ts mutants of vesicular stomatitis virus Indiana and Chandipura virus. Complete or incomplete virions of tsD1 appeared to be equally efficient inducers of mutations in heterologous viruses. Analysis of the progeny of a mixed infection of two complementing ts mutants of vesicular stomatitis virus New Jersey with electrophoretically distinguishable G, N, NS, and M proteins yielded no recombinants and excluded recombination as a factor in the generation of the electrophoretic mobility variants. In vitro translation of total cytoplasmic RNA from BHK cells indicated that post-translational processing was not responsible for the aberrant electrophoretic mobility of the N, NS, and M protein mutants. Aberrant glycosylation could account for three of four G protein mutants, however. Some clones of tsD1 had an N polypeptide which migrated faster in sodium dodecyl sulfate-polyacrylamide gel than did the wild type, suggesting that the polypeptide might be shorter by about 10 amino acids. Determination of the nucleotide sequence to about 200 residues from each terminus of the N gene of one of these clones, a revertant, and the wild-type parent revealed no changes compatible with synthesis of a shorter polypeptide by premature termination or late initiation of translation. The sequence data indicated, however, that the N-protein mutant and its revertant differed from the parental wild type in two of the 399 nucleotides determined. These sequencing results and the phenomenon of enhanced mutability associated with mutant tsD1 reveal that rapid and extensive evolution of the viral genome can occur during the course of normal cytolytic infection of cultured cells.  相似文献   

20.
Cytolytic viruses abrogate host protein synthesis to maximize the translation of their own mRNAs. In this study, we analyzed the eukaryotic initiation factor (eIF) 4G requirement for translation of vesicular stomatitis virus (VSV) and vaccinia virus (VV) mRNAs in HeLa cells using two different strategies: eIF4G depletion by small interfering RNAs or cleavage of eIF4G by expression of poliovirus 2A protease. Depletion of eIF4GI or eIF4GII moderately inhibits cellular protein synthesis, whereas silencing of both factors has only a slightly higher effect. Under these conditions, the extent of VSV protein synthesis is similar to that of nondepleted control cells, whereas VV expression is substantially reduced. Similar results were obtained when eIF4E was depleted. On the other hand, eIF4G cleavage by poliovirus 2A protease strongly inhibits translation of VV protein expression, whereas translation directed by VSV mRNAs is not abrogated, even though VSV mRNAs are capped. Therefore, the requirement for eIF4F activity is different for VV and VSV, suggesting that the molecular mechanism by which their mRNAs initiate their translation is also different. Consistent with these findings, eIF4GI does not colocalize with ribosomes in VSV-infected cells, while eIF2α locates at perinuclear sites coincident with ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号