首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
大鼠运动性疲劳模型的建立   总被引:5,自引:0,他引:5  
目的建立大鼠运动疲劳模型,观察运动疲劳对大鼠各项生理、生化指标的影响。方法20只大鼠随机分为正常对照组和运动疲劳模型组,运动疲劳模型组大鼠每日按照方案进行锻炼。实验结束后大鼠检测相关指标:血清MDA含量和红细胞SOD活性,肝脏与骨骼肌MDA含量、SOD活性,骨骼肌线粒体游离钙离子含量,骨骼肌线粒体膜电位,下丘脑神经递质。电镜观察骨骼肌线粒体细微结构。结果运动疲劳模型组大鼠造模2周以后其血清、肝和骨骼肌MDA含量均有显著升高,红细胞和骨骼肌SOD活性均有显著降低,骨骼肌线粒体膜电位显著性降低,骨骼肌线粒体游离Ca2+含量有显著性降低,下丘脑GABA、5-HT含量有显著升高,下丘脑DA、ACh含量有显著性下降,电镜观察显示骨骼肌超微结构改变并以线粒体改变较为明显。结论大鼠跑台运动2周可造成运动疲劳模型,并造成大鼠骨骼肌线粒体损伤。  相似文献   

2.
Xu Y  Liu JZ  Xia C 《生理学报》2008,60(1):59-64
本文旨在通过观察棕榈酸对模拟高原低氧大鼠离体脑线粒体解耦联蛋白(uncoupling proteins,UCPs)活性的影响及脑线粒体质子漏与膜电位的改变,探讨UCPs在介导游离脂肪酸对低氧时线粒体氧化磷酸化功能改变中的作用.将SpragueDawley大鼠随机分为对照组、急性低氧组和慢性低氧组.低氧大鼠于低压舱内模拟海拔5 000 m高原23 h/d作低氧暴露,分别连续低氧3 d和30 d.用差速密度梯度离心法提取脑线粒体,[3H-GTP法测定UCPs含量与活性,TPMP 电极与Clark氧电极结合法测量线粒体质子漏,罗丹明123荧光法测定线粒体膜电位.结果显示,低氧使脑线粒体内UCPs含量与活性升高、质子漏增加、线粒体膜电位降低;同时,低氧暴露降低脑线粒体对棕榈酸的反应性,UCPs活性的改变率低于对照组,且线粒体UCPs含量、质子漏、膜电位变化率亦出现相同趋势.线粒体质子漏与反映UCPs活性的Kd值呈线性负相关(P<0.01 r=-0.906),与反映UCPs含量的Bmax呈线性正相关(P<0.01,r=0.856),与膜电位呈线性负相关(P<0.01,r=-0.880).以上结果提示,低氧导致的脑线粒体质子漏增加及膜电位降低与线粒体内UCPs活性升高有关,同时低氧暴露能降低脑线粒体对棕榈酸的反应性,提示在高原低氧环境下,游离脂肪酸升高在维持线粒体能量代谢中起着自身保护和调节机制.  相似文献   

3.
耗竭性运动对大鼠骨骼肌线粒体内膜的影响   总被引:5,自引:0,他引:5  
观察SD大鼠一次急性运动至力竭后骨骼肌线粒体内膜流动性、NADH-CoQ还原酶及ATP酶活性变化.结果显示,大鼠骨骼肌线粒体内膜微粘度较安静时显著增高,线粒体内膜NADH-CoQ还原酶和ATP酶活性分别较安静时下降34.2%和46.2%.研究提示,耗竭性运动后大鼠骨骼肌线粒体呼吸链内膜分子动力学和呼吸链酶组分活性变化,可能是运动性疲劳重要的膜分子特征.  相似文献   

4.
目的:观察cO:激光照射及传统艾灸足三里穴对运动疲劳大鼠运动耐力、骨骼肌微循环及抗氧化酶活性的影响,初步探讨CO2激光照射足三里缓解运动疲劳的作用及其机制.方法:SD成年雄性大鼠,适应性游泳后随机分为正常对照组、模型组、艾灸组及激光组.采用无负重游泳方式建立大鼠运动疲劳模型,艾灸组及激光组在游泳运动的同时,分别采用CO2激光照射及艾灸足三里穴.末次力竭运动结束后,检测大鼠骨骼肌微循环,分离大鼠骨骼肌线粒体,检测线粒体内超氧化物歧化酶(SOD)、谷胱甘肽过氧化酶(GSH-Px)的活性.结果:艾灸组和激光组大鼠的力竭运动时间显著高于模型组照组(P<0.05),仍显著低于正常对照组(P<0.05);艾灸组双侧胫骨前肌的血流灌注量、线粒体内SOD、GSH-Px含量均显著高于模型组(P<0.05).激光组腹直肌线粒体血流灌注量、线粒体内SOD、GSH-Px含量显著高于模型组(P<0.05);艾灸组与激光组的力竭运动时间、骨骼肌血流灌注量、线粒体内的SOD、GSH-Px含量相比,无显著性差异(P>0.05).结论:CO2激光照射足三里穴能够模拟传统的燃艾灸疗中的生物物理过程,从而实现仿生灸疗,可有效提高运动疲劳大鼠骨骼肌线粒体抗氧化酶活性、增加骨骼肌血流灌注,从而缓解运动疲劳.  相似文献   

5.
线粒体电子传递链电子漏的化学发光测定   总被引:2,自引:0,他引:2  
周智波  钟丽君  程时 《动物学报》2004,50(1):120-125
本实验用差速离心法分离正常大鼠肝脏和心肌线粒体 ,以lucigenin (探测超氧阴离子 )与luminol (探测过氧化氢 )为探剂 ,用化学发光法测定METC电子漏的生成。在反应体系中加入外源底物 ,其发光强度明显高于空白对照 (体系中无线粒体 )。在肝线粒体体系中 ,无论是lucigenin还是luminol诱发的发光 ,琥珀酸底物引起的发光强均要高于丙酮酸 /苹果酸引起的发光强度。在心肌线粒体 luminol体系中也有与肝线粒体相似的结果 ,在心肌线粒体 lucigenin体系中 ,加入外源底物丙酮酸 /苹果酸诱发的发光强度高于琥珀酸诱发的发光强度  相似文献   

6.
目的:观察一次性力竭运动后大鼠脑、心、骨骼肌组织和线粒体中PHB1含量的变化及对大鼠线粒体功能的影响,探寻PHB1与线粒体功能和能量代谢的关系。方法:健康雄性SD大鼠40只,随机分为2组(n=20):对照组和一次性力竭运动组,大鼠进行一次性急性跑台运动建立力竭运动模型。收集各组大鼠的心、脑和骨骼肌组织样品并提取线粒体,检测其呼吸功能和ROS的变化。用Western blot方法检测组织和线粒体中PHB1蛋白表达水平;用分光光度计检测各器官中ATP含量以及线粒体中复合体V活性(ATP合酶活性)。结果:(1)一次性力竭运动后脑、心肌、骨骼肌中ATP含量显著性降低;(2)一次性力竭运动后脑、心肌、骨骼肌线粒体中复合体V活性、RCR、ROS显著性降低,ST4均显著性升高,ST3无显著性差异。(3)一次性力竭运动后心、脑、骨骼肌线粒体中PHB1的表达显著性减少。(4)通过相关性分析得出:一次性力竭运动后心、脑、骨骼肌中ATP含量与心、脑、骨骼肌中复合体V活性呈正相关;心、脑、骨骼肌中ATP含量和心、脑骨骼肌中PHB1的表达呈正相关。结论:一次性力竭运动后,降低线粒体氧化磷酸化功能,使大鼠脑、骨骼肌线粒体内ROS生成增加,PHB1的表达、ATP含量和复合体V活性均下降。一次性力竭运动使得大鼠线粒体内PHB1表达降低,线粒体功能减弱,机体能量代谢降低。  相似文献   

7.
质子漏及其在基础代谢中的作用   总被引:5,自引:0,他引:5  
“质子漏”是指电子传递链跨膜泵出的质子通过不涉及ATP合成的途径而跨膜扩散流回基质的过程,它的出现形成了由呼吸链驱动的质子泵出和质子回漏的无效循环通路.质子漏的耗氧在呼吸速率中占有重要的比重,对细胞呼吸有很强的控制作用,可以调节能量偶联系数,同时质子漏也是重要的产热过程,它承担了基础代谢产热的20%~30%.质子漏的生理功能有产热、增加代谢调节潜能、清除有害自由基和调节碳流等.  相似文献   

8.
线粒体的热机效率原理及其在运动疲劳中的应用   总被引:3,自引:0,他引:3  
基于呼吸链电子漏现象提出了用热机效率原理描述线粒体合成ATP 的工作效率, 指出呼吸链漏电不仅使线粒体合成ATP 的效率降低, 而且导致线粒体生成有害的活性氧自由基, 引起线粒体损伤。通过检测游泳耗竭小鼠心肌线粒体生成过氧化氢速率的增高和线粒体呼吸对氰化钾敏感性的下降,证明了耗竭运动引起呼吸链电子漏水平明显增高。随电子漏增加而出现的活性氧的损伤表现在线粒体脂质过氧化程度增加,呼吸链四个酶复合物的活性均有不同程度降低,以及呼吸控制率的下降等等。文章讨论了呼吸链电子漏和电子漏引起的活性氧生成对线粒体合成ATP 效率的影响。  相似文献   

9.
运动性骨骼肌疲劳亚细胞机制的探讨   总被引:7,自引:0,他引:7  
本实验采用持续性下坡跑运动,观察大鼠骨骼肌运动后不同时相线粒体形态、代谢、机能等指标的变化,结果表明:大鼠运动后即刻线粒体钙含量、细胞膜丙二醛(MDA)值明显增加,ATP含量和细胞膜Na+,K+-ATP酶活性下降;运动后24h线粒体钙含量、MDA值增加最明显,ATP含量仍未恢复,细胞膜Na+,K+-ATP酶活性基本恢复,线粒体体密度、平均体积比运动前明显增加,比表面缩小;运动后48hATP含量完全恢复,线粒体钙含量、MDA值开始恢复。本研究结果提示,急性运动引起的细胞膜脂质过氧化加强、线粒体形态、代谢机能异常抑制线粒体氧化磷酸化过程、减少ATP生成可能是运动性骨骼肌疲劳的亚细胞机制之一。耐力训练可以通过改善线粒体形态、代谢、机能提高机体的运动能力。  相似文献   

10.
目的和方法 :以SD大鼠递增负荷力竭性跑台运动为运动性疲劳模型 ,分别测定运动后即刻骨路肌线粒体 :①呼吸链复合体Ⅱ Ⅲ电子传递与质子泵出比值 (H /2e) ;②以琥珀酸 (S)为底物的呼吸控制 :态 3呼吸速率(R3 )、态 4呼及速率 (R4 )、呼吸控制比 (RCR)和磷 /氧比 (P/O) ;②H ATPase合成活力 ,探讨疲劳性运动中线粒体氧化磷酸化功能改变的机理。结果 :力竭性运动后以S为底物的线粒体R4升高 2 1.10 % (P <0 .0 5 ) ;呼吸链复合体Ⅱ Ⅲ的总、净H 2e分别降低 8.5 3和 19.5 1% (均P <0 .0 5 )。底物的RCR和P/O呈显著降低 (均P <0 .0 5 ) ,而底物的R3则有所增加 (P >0 .0 5 ) ,H ATPase合成活力降低 16.68% (P <0 .0 5 )。结论 :线粒体质子漏增加 ,呼吸链电子传递与质子泵出偶联程度下降 ,氧化磷酸化脱偶联导致无效氧耗增多 ,可能是运动性疲劳状态下线粒体氧利用率下降的重要机制。  相似文献   

11.
Lisa Bevilacqua  Carmen Estey 《BBA》2010,1797(8):1389-1397
Calorie restriction (CR), without malnutrition, consistently increases lifespan in all species tested, and reduces age-associated pathologies in mammals. Alterations in mitochondrial content and function are thought to underlie some of the effects of CR. Previously, we reported that rats subjected to variable durations of 40% CR demonstrated a rapid and sustained decrease in maximal leak-dependent respiration in skeletal muscle mitochondria. This was accompanied by decreased mitochondrial reactive oxygen species generation and increased uncoupling protein-3 protein (UCP3) expression. The aim of the present study was to determine the contribution of UCP3, as well as the adenine nucleotide translocase to these functional changes in skeletal muscle mitochondria. Consistent with previous findings in rats, short-term CR (2 weeks) in wild-type (Wt) mice resulted in a lowering of the maximal leak-dependent respiration in skeletal muscle mitochondria, without any change in proton conductance. In contrast, skeletal muscle mitochondria from Ucp3-knockout (KO) mice similarly subjected to short-term CR showed no change in maximal leak-dependent respiration, but displayed an increased proton conductance. Determination of ANT activity (by measurement of inhibitor-sensitive leak) and protein expression revealed that the increased proton conductance in mitochondria from CR Ucp3-KO mice could be entirely attributed to a greater acute activation of ANT. These observations implicate UCP3 in CR-induced mitochondrial remodeling. Specifically, they imply the potential for an interaction, or some degree of functional redundancy, between UCP3 and ANT, and also suggest that UCP3 can minimize the induction of the ANT-mediated ‘energy-wasting’ process during CR.  相似文献   

12.
A significant proportion of standard metabolic rate is devoted to driving mitochondrial proton leak, and this futile cycle may be a site of metabolic control during hibernation. To determine if the proton leak pathway is decreased during metabolic depression related to hibernation, mitochondria were isolated from liver and skeletal muscle of nonhibernating (active) and hibernating arctic ground squirrels (Spermophilus parryii). At an assay temperature of 37 degrees C, state 3 and state 4 respiration rates and state 4 membrane potential were significantly depressed in liver mitochondria isolated from hibernators. In contrast, state 3 and state 4 respiration rates and membrane potentials were unchanged during hibernation in skeletal muscle mitochondria. The decrease in oxygen consumption of liver mitochondria was achieved by reduced activity of the set of reactions generating the proton gradient but not by a lowered proton permeability. These results suggest that mitochondrial proton conductance is unchanged during hibernation and that the reduced metabolism in hibernators is a partial consequence of tissue-specific depression of substrate oxidation.  相似文献   

13.
We have investigated the effect of 24-h fasting on basal proton leak and uncoupling protein (UCP) 3 expression at the protein level in subsarcolemmal and intermyofibrillar skeletal muscle mitochondria. In fed rats, the two mitochondrial populations displayed different proton leak, but the same protein content of UCP3. In addition, 24-h fasting, both at 24 and 29 degrees C, induced an increase in proton leak only in subsarcolemmal mitochondria, while UCP3 content increased in both the populations. From the present data, it appears that UCP3 does not control the basal proton leak of skeletal muscle mitochondria.  相似文献   

14.
Uncoupling protein-3 (UCP3) expression has been shown to increase dramatically in response to muscular contraction, but the physiological significance of UCP3 upregulation is still elusive. In this study, UCP3 mRNA and protein expression were investigated along with mitochondrial respiratory function, reactive oxygen species (ROS) generation, and antioxidant defense in rat skeletal muscle during and after an acute bout of prolonged exercise. UCP3 mRNA expression was elevated sharply at 45 min of exercise, reaching 7- to 8-fold above resting level at 150 min. The increase in UCP3 protein content showed a latent response but was elevated approximately 1.9-fold at 120 min of exercise. Both UCP3 mRNA and UCP3 protein gradually returned to resting levels 24 h postexercise. Mitochondrial ROS production was progressively increased during exercise. However, ROS showed a dramatic drop at 150 min although their levels remained severalfold higher during the recovery. Mitochondrial State 4 respiration rate was increased by 46 and 58% (p < 0.05) at 90 and 120 min, respectively, but returned to resting rate at 150 min, when State 3 respiration and respiratory control index (RCI) were suppressed. ADP-to-oxygen consumption (P/O) ratio and ATP synthase activity were lowered at 3 h postexercise, whereas proton motive force and mitochondrial malondialdehyde content were unchanged. Manganese superoxide dismutase gene expression was not affected by exercise except for an increase in mRNA abundance at 3 h postexercise. These data demonstrate that UCP3 expression in rat skeletal muscle can be rapidly upregulated during prolonged exercise, possibly owing to increased ROS generation. Increased UCP3 may partially alleviate the proton gradient across the inner membrane, thereby reducing further ROS production by the electron transport chain. However, prolonged exercise caused a decrease in energy coupling efficiency in muscle mitochondria revealed by an increased respiration rate due to proton leak (State 4/State 3 ratio) and decreased RCI. We thus propose that the compromise of the oxidative phosphorylation efficiency due to UCP3 upregulation may serve an antioxidant function to protect the muscle mitochondria from exercise-induced oxidative stress  相似文献   

15.
Superoxide anion generation and the impairment of oxidative phosphorylation yield were studied in rat skeletal muscle mitochondria submitted to anoxia/reoxygenationk in vitro. Production of superoxide anion was detected after several cycles of anoxia/reoxygenationk. Concomitantly, a decrease of state 3 respiration and phosphorylation yield (ADP/O) were observed. The latter resulted from a proton leak. The presence of palmitic acid during anoxia/reoxygenationk cycles led to a dose-dependent inhibition of superoxide anion production together with a partial protection of the ADP/O ratio measured after anoxia/reoxygenationk. The ADP/O decrease was shown to be due to a permeability transition pore-sustained proton leak, as it was suppressed by cyclosporine A. The permeability transition pore activation was induced during anoxia/reoxygenationk by superoxide anion, as it was cancelled by the spin trap (POBN), which scavenges superoxide anion and by palmitic acid, which induces mitochondrial uncoupling. It can be proposed that the palmitic acid-induced proton leak cancels the production of superoxide anion by mitochondria during anoxia/reoxygenationk and therefore prevents the occurrence of the superoxide anion-induced permeability transition pore-mediated proton leak after anoxia/reoxygenationk.  相似文献   

16.
Previous study showed that exercise induces higher oxidative damage and respiratory capacity reduction in hyperthyroid than in euthyroid skeletal muscle. Because impaired cell function can result from mitochondrial dysfunction, we evaluated the changes induced by exercise in oxygen consumption of skeletal muscle mitochondria from euthyroid and hyperthyroid rats. The mitochondrial function was related with indices of oxidative damage and nitric oxide production, scavenger levels and mitochondrial ROS production rates. Our results show that exercise increased state 4 and decreased state 3 respiration, and the highest changes happened in hyperthyroid preparations. This was consistent with the observation that oxidative damage and NO(*) derivative content were increased by T(3) administration and exercise, reaching the highest levels in hyperthyroid exercised rats. Our results also indicate that the high mitochondrial oxidative damage induced by T(3) and exercise is due to enhanced ROS production, which is dependent on increases in mitochondrial content and reduction degree, respectively, of autoxidizable electron carriers.  相似文献   

17.
Previous researchers have demonstrated that 3,4-methylenedioxymethamphetamine (MDMA) induced hyperthermia, in skeletal muscle of animals, is uncoupling protein 3 (UCP3) dependent. In light of our investigations that in vivo phosphorylation of UCP1 is augmented under conditions of cold-acclimation, we set out to investigate whether (a) UCP3 was phosphorylated in vivo and (b) whether in vivo phosphorylation of UCP3 resulted in increased proton leak following MDMA administration to animals. Our data demonstrate that MDMA treatment (but not PBS treatment) of animals results in both in vivo serine and tyrosine phosphorylation of UCP3 in skeletal muscle mitochondria, isolated in the presence of phosphatase inhibitors to preserve in vivo phosphorylation. In addition, proton leak is only increased in skeletal muscle mitochondria isolated from MDMA treated animals (in the presence of phosphatase inhibitors) and the increased proton leak is due to phosphorylated UCP3. UCP3 abundance in skeletal muscle mitochondria is unaffected by MDMA administration. Preservation of UCP3 phosphorylation and increased proton leak is lost when skeletal muscle mitochondria are isolated in the absence of phosphatase inhibitors. We conclude that MDMA treatment of animals increases proton leak in skeletal muscle mitochondria by activating UCP3 through in vivo covalent modification of UCP3 by phosphorylation. Furthermore, we deduce that the MDMA induced hyperthermia in skeletal muscle is due to increased proton leak in vivo as a result of activation of UCP3 through phosphorylation.  相似文献   

18.
Uncoupling protein-1 homologs are hypothesized to mediate mitochondrial proton leak. To test this hypothesis, we determined the effects of ATP and other nucleotides on liver and skeletal muscle mitochondrial non-phosphorylating respiration (VO(2)), membrane potential, FCCP-stimulated respiratory control ratios, and swelling. Neither ATP nor CTP affected liver or muscle proton leak, but both inhibited the respiratory chain. Unexpectedly, CMP stimulated liver proton leak (EC(50) approximately 4.4+/-0.5 mM). Using CMP chromatography, we identified two proteins (M(r)=31.2 and 32.6 kDa) from liver mitochondria that are similar in size to members of the mitochondrial carrier protein family. We conclude (a) liver and muscle mitochondrial proton leak is insensitive to ATP and CTP, and (b) CMP activates a leak in liver mitochondria. The CMP-inducible leak may be mediated by a 30-32 kDa protein. Based on the high concentrations required, CMP is unlikely to be a physiologically important leak regulator. Nonetheless, our results show that tissues other than brown fat have inducible leaks that may be protein-mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号