首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Localizations of aluminum in soybean bacteroids and seeds.   总被引:1,自引:0,他引:1       下载免费PDF全文
L E Roth  J R Dunlap    G Stacey 《Applied microbiology》1987,53(10):2548-2553
Aluminum, long known to be detrimental to soybean productivity, was localized in the polyphosphate granules (PPG) of bacteroids in root nodules of soybean plants. By using energy-dispersive X-ray analysis, bacteroids in early infections were shown to have typical PPG constituents. However, in PPG in older infections and after the bacteroids were digested intracellularly, aluminum was also detected. These results indicate that aluminum accumulates in PPG after a period when organisms have been resident in host cells and that high levels of aluminum were present in the bacteroids at the time of their demise. At least some of the aluminum in these laboratory-grown plants could have come from the seeds used.  相似文献   

2.
The enzymatic capacity for metabolism of poly-(beta)-hydroxybutyrate (PHB) has been examined in nitrogen-fixing symbioses of soybean (Glycine max L.) plants, which may accumulate substantial amounts of PHB, and chickpea (Cicer arietinum L.) plants, which contain little or no PHB. In the free-living state, both Bradyrhizobium japonicum CB 1809 and Rhizobium sp. (Cicer) CC 1192, which form nodules on soybean and chickpea plants, respectively, produced substantial amounts of PHB. To obtain information on why chickpea bacteroids do not accumulate PHB, the specific activities of enzymes of PHB metabolism (3-ketothiolase, acetoacetyl-coenzyme A reductase, PHB depolymerase, and 3-hydroxybutyrate dehydrogenase), the tricarboxylic acid cycle (malate dehydrogenase, citrate synthase, and isocitrate dehydrogenase), and related reactions (malic enzyme, pyruvate dehydrogenase, and glutamate:2-oxoglutarate transaminase) were compared in extracts from chickpea and soybean bacteroids and the respective free-living bacteria. Significant differences were noted between soybean and chickpea bacteroids and between the bacteroid and free-living forms of Rhizobium sp. (Cicer) CC 1192, with respect to the capacity for some of these reactions. It is suggested that a greater potential for oxidizing malate to oxaloacetate in chickpea bacteroids may be a factor that favors the utilization of acetyl-coenzyme A in the tricarboxylic acid cycle over PHB synthesis.  相似文献   

3.
Chen CL  Sung JM 《Plant physiology》1983,73(4):1065-1066
The effects of water stress on nitrate reductase and nitrite reductase activities in symbiotic nodules were examined in field-grown soybean plants (Glycine max L Merr. cv Clark). The in vitro assays of enzyme activity indicated that the nodule cytosol and bacteroids contained both nitrate reductase and nitrite reductase activities. The reduction of nitrate in bacteroids increased significantly as nodule water potential declined from −0.6 to −1.4 megapascals, and then decreased when −1.8 megapascals water potential was reached. On the contrary, the reduction of nitrate in nodule cytosol was inhibited as water stress progressed. Increases in water stress intensity also caused a significant inhibition in nitrite reductase activities of bacteroids and nodule cytosol within soybean nodules. The results show that nitrate reduction occurred both in the cytosol and bacteroids of water-stressed soybean nodules. The reduction of nitrate functioned at different physiological modes in these two fractions.  相似文献   

4.
Soybean root nodule ultrastructure during dark-induced stress and recovery   总被引:1,自引:0,他引:1  
Summary Root-nodules of soybean plants dark-stressed for 8 days and then allowed to recover for up to 17 days were examined by transmission electron microscopy. Control nodules possessed all the ultrastructural features characteristic of infected and uninfected nodule cells. Minimal changes in the appearance of host cells and bacteroids occurred during the first four days of dark stress. After 8 days of dark stress, damage was observed in the cellular and organelle membranes; however, very few changes were observed in the bacteroids. Nodule structure continued to degrade during the first two days of recovery after which time nodules either recovered or completely degraded. In the former case, structural integrity returned to all nodule cells. In the latter case all structural integrity of the host cell disappeared; however, bacteroids appeared intact suggesting that they remained viable.Published as Paper no. 7974, Journal Series, Nebraska Agriculture Research Division.  相似文献   

5.
Wong PP  Evans HJ 《Plant physiology》1971,47(6):750-755
Soybean (Glycine max) nodule bacteroids contain high concentrations of poly-β-hydroxybutyrate and possess a depolymerase system that catalyzes the hydrolysis of the polymer. Changes in poly-β-hydroxybutyrate content and in activities of nitrogenase, β-hydroxybutyrate dehydrogenase, and isocitrate lyase in nodule bacteroids were investigated under conditions in which the supply of carbohydrate from the soybean plants was interrupted. The poly-β-hydroxybutyrate content of bacteroids did not decrease appreciably until the carbohydrate supply from the host plants was limited by incubation of excised nodules, incubation of plants in the dark, or by senescence of the host plant. Isocitrate lyase activity in bacteroids was not detected until poly-β-hydroxybutyrate utilization appeared to begin. The presence of a supply of poly-β-hydroxybutyrate in nodule bacteroids was not sufficient for maintenance of high nitrogenase activity under conditions of limited carbohydrate supply from the host plant. An unusually high activity of β-hydroxybutyrate dehydrogenase was observed in bacteroid extracts but no significant change in the activity of this enzyme was observed as a result of apparent utilization of poly-β-hydroxybutyrate by nodule bacteroids.  相似文献   

6.
Green LS  Emerich DW 《Plant physiology》1997,114(4):1359-1368
A mutant strain of Bradyrhizobium japonicum USDA 110 devoid of [alpha]-ketoglutarate dehydrogenase activity (LSG184) was used to test whether this tricarboxylic acid cycle enzyme is necessary to support nitrogen fixation during symbiosis with soybean (Glycine max). LSG184 formed nodules about 5 d later than the wild-type strain, and the nodules, although otherwise normal in structure, contained many fewer infected host cells than is typical. At 19 d after inoculation cells infected with the mutant strain were only partially filled with bacteroids and showed large accumulations of starch, but by 32 d after inoculation the host cells infected with the mutant appeared normal. The onset of nitrogen fixation was delayed about 15 d for plants inoculated with LSG184, and the rate, on a per nodule fresh weight basis, reached only about 20% of normal. However, because nodules formed by LSG184 contained only about 20% of the normal number of bacteroids, it could be inferred that the mutant, on an individual bacteroid basis, was fixing nitrogen at near wild-type rates. Therefore, the loss of [alpha]-ketoglutarate dehydrogenase in B. japonicum does not prevent the formation or the functioning of nitrogen-fixing bacteroids in soybean.  相似文献   

7.
Root nodules were harvested from chamber-grown soybean (Glycine max L. Merrill cv Woodworth) plants throughout development. Apparent nitrogenase activity (acetylene reduction) peaked before seeds began to develop, but a significant amount of activity remained as the seeds matured. Nodule senescence was defined as the period in which residual nitrogenase activity was lost. During this time, soluble protein and leghemoglobin levels in the host cell cytosol decreased, and proteolytic activity against azocasein increased. Degradative changes were not detected in bacteroids during nodule senescence. Total soluble bacteroid protein per gram of nodule remained constant, and an increase in proteolytic activity in bacteroid extracts was not observed. These results are consistent with the view that soybean nodule bacteroids are capable of redifferentiation into free-living bacteria upon deterioration of the legume-rhizobia symbiosis.  相似文献   

8.
A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.  相似文献   

9.
Summary Acetylene was reduced to ethylene by effective white clover nodules and by fully and partially effective intact nodules, nodule homogenates, and bacteroids of soybeans. Succinate and several amino acids markedly stimulated the reduction by effective soybean bacteroids, but the stimulation was slight with partially effective bacteroids. Acetylene metabolism by effective soybean bacteroids was also enhanced by excretions of in vitro-grown Rhizobium japonicum, excretions of bacteria derived from effective and ineffective nodules, and the soluble fraction from these nodules. Inhibitors of nitrogen fixation were not found in ineffective nodules. Ineffective soybean and white clover nodules and homogenates or isolated bacteria from ineffective soybean nodules did not reduce acetylene. Additions of succinate, amino acids, the soluble fraction of effective nodules, or excretions of effective bacteroids or of in vitro-grown cells of an effective R. japonicum strain did not promote nitrogen fixation by bacterial cells obtained from ineffective soybean nodules.  相似文献   

10.
A study was made on the short-term effect of ammonium ions on the nitrogenase activity of pea root nodules. Nodulated pea plants (Pisum sativum), having reached maximum acetylene-reducing activity, were supplied with NH4Cl (20 mM). Nitrogenase activity of intact plants, detached nodules, and isolated bacteroids was measured at differed time intervals. A significant drop (20 to 40%) in the acetylene-reducing activity of treated intact plants and their detached nodules was observed after 1 day. No drop in the nitrogenase activity of bacteroids (assayed aerobically, or anaerobically after treatment with ethylenediaminetetraacetic acid-toluene) occurred for 2 to 4 days after the addition of NH4+ to the plants, depending on cultural conditions. From these results it is concluded that the adverse effect of NH4+ on acetylene reduction by intact plants and detached nodules during the first 2 days is not due to a decrease in the amount of nitrogenase in the bacteroids. It is suggested that the effect has to be attributed to a reduced supply to the bacteroids of energy-delivery photosynthates.  相似文献   

11.
A study was made on the short-term effect of ammonium ions on the nitrogenase activity of pea root nodules. Nodulated pea plants (Pisum sativum), having reached maximum acetylene-reducing activity, were supplied with NH4Cl (20 mM). Nitrogenase activity of intact plants, detached nodules, and isolated bacteroids was measured at differed time intervals. A significant drop (20 to 40%) in the acetylene-reducing activity of treated intact plants and their detached nodules was observed after 1 day. No drop in the nitrogenase activity of bacteroids (assayed aerobically, or anaerobically after treatment with ethylenediaminetetraacetic acid-toluene) occurred for 2 to 4 days after the addition of NH4+ to the plants, depending on cultural conditions. From these results it is concluded that the adverse effect of NH4+ on acetylene reduction by intact plants and detached nodules during the first 2 days is not due to a decrease in the amount of nitrogenase in the bacteroids. It is suggested that the effect has to be attributed to a reduced supply to the bacteroids of energy-delivery photosynthates.  相似文献   

12.
The aim of this study is to evaluate the contribution of bacteroidproline catabolism as an adaptation to drought stress in soybeanplants. To accomplish this, soybeans (Glycine max L. Merr.)were inoculated with either a parental strain of Bradyrhizobiumjaponicum which was able to catabolize proline, or a mutantstrain unable to catabolize proline. A large strain-dependentdifference in nodule number and size was observed. In orderto separate inoculant-dependent effects on nodulation from effectson bacteroid proline catabolism, plants inoculated with eachstrain were only compared to other plants inoculated with thesame strain, thus removing the observed inoculant-dependentdifferences in nodulation as a bar to interpretation of theresults. This experimental design allowed a comparison of thedrought penalty on yield for plants with parental bacteroidsand for plants with mutant bacteroids. The two results werethen compared to each other in order to evaluate the impactof the ability of bacteroids to catabolize proline on the responseto drought stress. When water stress was mild, soybean plants inoculated with bacteriaunable to catabolize proline suffered twice the percentage decreasein seed yield as did plants inoculated with bacteria able tocatabolize proline. However, when stress was severe there wasno significant effect of the ability of bacteroids to catabolizeproline on drought imposed decrease in seed yield. These resultssuggest that increasing the oxidative flux of proline in bacteroidsmight provide an agronomically significant yield advantage whenstress is modest, but that severe drought stress would probablyoverwhelm this yield benefit. Key words: N2-fixation, proline dehydrogenase, drought stress  相似文献   

13.
We examined the effect of drought stress on proline accumulation,nitrogenase activity and activities of enzymes related to prolinemetabolism in soybean (Glycine max [L.] Merr.) nodules. Nitrogenase(C2H2 reducing) activity was inhibited 90% or more as a resultof drought stress. This inhibition was substantially reversedafter a 4 h recovery period. Pyrroline-5-carboxylate reductaseactivity in extracts of drought-stressed nodules from 25-d-oldplants was 55% higher than in unstressed nodules, but the sameactivity in preparations from 55-d-old plants was similar tothat of control plants. Extracts of recovering nodules on plantsof both ages had activities near those of controls. Droughtstress increased the activity of the pentose phosphate pathwayby about 65% in extracts of nodules from 55-d-old plants, butthere was no effect in extracts of nodules from younger plants(25-d-old). Proline dehydrogenase activity was 3.7 and 1.6 timeshigher in bacteroids isolated from nodules taken from 25- and55-d-old stressed plants, respectively, than in comparable controlbacteroids. This activity remained high in bacteroids from bothsets of recovering nodules. The amount of proline in extractsfrom stressed nodules was 3- to 4-fold higher than in unstressednodules, despite increased proline dehydrogenase activity andremained high in nodules collected 4 h after rewatering. Thisincrease was observed in both cytoplasmic and bacteroid fractions.The possible physiological significance of these results isdiscussed. Key words: Proline metabolism, pentose phosphate pathway, drought stress, soybean nodules  相似文献   

14.
The aim of the work reported here was to ascertain that the patterns of labeling seen in isolated bacteroids also occurred in bacteroids in intact nodules and to observe early metabolic events following exposure of intact nodules to 14CO2. Intact nodules of soybean (Glycine max L. Merr. cv Ripley) inoculated with Bradyrhizobium japonicum USDA 110 and pea (Pisum sativum L. cv Progress 9) inoculated with Rhizobium leguminosarum bv viciae isolate 128C53 were detached and immediately fed 14CO2 for 1 to 6 min. Bacteroids were purified from these nodules in 5 to 7 min after the feeding period. In the cytosol from both soybean and pea nodules, malate had the highest radioactivity, followed by citrate and aspartate. In peas, asparagine labeling equaled that of aspartate. In B. japonicum bacteroids, malate was the most rapidly labeled compound, and the rate of glutamate labeling was 67% of the rate of malate labeling. Aspartate and alanine were the next most rapidly labeled compounds. R. leguminosarum bacteroids had very low amounts of 14C and, after a 1-min feeding, malate contained 90% of the radioactivity in the organic acid fraction. Only a trace of activity was found in aspartate, whereas the rate of glutamate and alanine labeling approached that of malate after 6 min of feeding. Under the conditions studied, malate was the major form of labeled carbon supplied to both types of bacteroids. These results with intact nodules confirm our earlier results with isolated bacteroids, which showed that a significant proportion of provided labeled substrate, such as malate, is diverted to glutamate. This supports the conclusion that microaerobic conditions in nodules influence carbon metabolism in bacteroids.  相似文献   

15.
Viability of Rhizobium bacteroids.   总被引:3,自引:1,他引:2       下载免费PDF全文
Bacteroids prepared from nodules of soybean and bean were tested for viability. Contrary to the prevailing view that bacteroids are nonviable, it was found that bacteroids averaged 90% viability, irrespective of Rhizobium strain, nodule age, or nodule environment.  相似文献   

16.
Bacteroids prepared from nodules of soybean and bean were tested for viability. Contrary to the prevailing view that bacteroids are nonviable, it was found that bacteroids averaged 90% viability, irrespective of Rhizobium strain, nodule age, or nodule environment.  相似文献   

17.
Bradyrhizobium japonicum bacteroids in soybean nodules expressed fibrillar appendages during senescence. In both scanning and transmission electron microscopy (SEM and TEM), these structures were observed to connect adjacent bacteroids, and bacteroids to symbiotic membranes. They were 20–25 nm in diameter, 100–2,500 nm in length and were linear, branched, or part of a web-like matrix. Bacteroids expressing appendages were not uniformly distributed, but were abundant within localized regions in the senescing nodule. The root systems of nodulated greenhouse-grown plants flushed with argon induced the appendages at earlier plant ages, and they were more prolific and wide spread than those in untreated nodules. Bradyrhizobium japonicum symbiotic appendages appear to be a response to an environmental niche within senescing nodules.  相似文献   

18.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

19.
The symbiotic interaction between legumes and soil bacteria (e.g., soybean [Glycine max L.] and Bradyrhizobium japonicum]) leads to the development of a new root organ, the nodule, where bacteria differentiate into bacteroids that fix atmospheric nitrogen for assimilation by the plant host. In exchange, the host plant provides a steady carbon supply to the bacteroids. This carbon can be stored within the bacteroids in the form of poly-3-hydroxybutyrate granules. The formation of this symbiosis requires communication between both partners to regulate the balance between nitrogen fixation and carbon utilization. In the present study, we describe the soybean gene GmNMNa that is specifically expressed during the infection of soybean cells by B. japonicum. GmNMNa encodes a protein of unknown function. The GmNMNa protein was localized to the nucleolus and also to the mitochondria. Silencing of GmNMNa expression resulted in reduced nodulation, a reduction in the number of bacteroids per infected cell in the nodule, and a clear reduction in the accumulation of poly-3-hydroxybutyrate in the bacteroids. Our results highlight the role of the soybean GmNMNa gene in regulating symbiotic bacterial infection, potentially through the regulation of the accumulation of carbon reserves.  相似文献   

20.
In most studies concerning legume root nodules, the question to what extent the nodule-borne bacteroids survive nodule senescence has not been properly addressed. At present, there is no "model system" to study these aspects in detail. Such a system with Lotus japonicus and the broad host range Rhizobium sp. NGR234 has been developed. L. japonicus L. cv. Gifu was inoculated with Rhizobium sp. NGR234 and grown over a 12 week time period. The first nodules could be harvested after 3 weeks. Nodulation reached a plateau after 11 weeks with a mean of 64 nodules having a biomass of nearly 100 mg FW per plant. Nodules were harvested and homogenized at different stages of plant development. Microscopic inspection of the extracts revealed that, typically, nodules contained c. 15x10(9) bacteroids g(-1) FW, and that about 60% of the bacteroids were viable as judged by vital staining. When aliquots of the extracts were plated on selective media, a substantial number of "colony-forming units" was observed in all cases, indicating that a considerable fraction of the bacteroids had the potential to redifferentiate into growing bacteria. In nodules from the early developmental stages, the fraction of total bacteroids yielding CFUs amounted to about 20%, or one-third of the bacteroids judged to be viable after extraction, and it increased slightly when the plants started to flower. In order to see how nodule senescence affected the survival and redifferentiation potential of bacteroids, some plants were placed in the dark for 1 week. This led to typical symptoms of senescence in the nodules such as an almost complete loss of nitrogenase activity and a considerable decrease in soluble proteins. However, surprisingly, the number of total and viable bacteroids g(-1) nodule FW remained virtually constant, and the fraction of total bacteroids yielding CFUs did not decrease but significantly increased up to 75% of the bacteroids judged to be viable after extraction. This result indicates that during nodule senescence bacteroids might be induced to redifferentiate into the state of free-living, growing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号