首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
遮荫棉花转入强光后光合作用的光抑制及其恢复   总被引:16,自引:0,他引:16  
研究了遮荫棉花(Gossypium hirsutum L.)突然由遮荫条件暴露在自然强光下时,叶绿素荧光发射、叶绿体色素组成、净光合速率(Pn)等在光照转移当天以及随后的适应过程中(光照转换后15d内)的变化。遮荫棉花突然转到强光下,叶片发生了严重的光合作用光抑制,叶绿素荧光参数Fv/Fm和φPSⅡ急剧降低,且明显低于自然光照下生长的叶片,而F。值却明显升高。这些参数即使在光照转换的次日清晨也不能完全恢复。Fv/Fm和Pn在光照转换以后的4d内持续降低,在第6天以后开始逐渐升高,在10-12d达到稳定值,表现出遮荫棉花叶片对光强变化的一定适应性,但Fv/Fm和Pn均未达到自然光照条件下生长的棉花叶片的相应值。最后的Pn值较遮荫下叶片增加60%,但同自然光照下生长的叶片相比只有后的40%。试验结果还表明,光照转换以后叶片内叶黄素循环库逐渐增大,在较短的时间内(3d)即可达到较高的水平。遮荫棉花突然转么自然强光下,叶片Fv/Fm及Pn的降低与PSⅡ反应中心的破坏有关,在对强光的适应过程中依赖叶黄素循环的热耗散等保护机制增强。光保护机制的逐渐完善有助于减轻叶片由遮荫转到强光下遭受的光破坏。  相似文献   

2.
以气体交换和叶绿素荧光测定相结合的方法研究了亚热带自然林乔木荷树、黧蒴和林下灌木九节、罗伞幼苗的光合电子传递及激发能利用的分配对生长光强的适应特性。4种植物生长于100%、36%和16%的自然光下8个月,叶片的光化学速率和热能耗散速率随光强增大而提高,热能耗散占总的光能吸收的比例也因光强不同而改变,16%光下的相对热耗散率约为40%-45%,100%自然光下增大至50%-75%。叶片总的非环式电子  相似文献   

3.
以2年生三叶漆(T erm inth ia p an icu la ta)幼苗为实验材料,研究了生长于全自然光和遮荫条件(光强相当于自然光强的50%)下幼苗的光合特性和叶绿素荧光参数对不同土壤水分条件的响应,探讨了其对干旱和强光胁迫的生理适应机制.结果表明,叶片相对含水量(RW C)、叶水势(Ψ)、最大光合速率(Pm ax)、表观量子效率(AQY)、暗呼吸速率(Rd)和光合色素含量都随干旱胁迫的加剧而下降.Pm ax、AQY、Rd和比叶重(LM A)随光强的增加而升高,色素含量则随光强升高而降低.Ch la/b、C ar/Ch l随干旱程度和光强的增加有升高的趋势.PSⅡ的最大光能转换效率(Fv/Fm)和光化学量子效率(ФPSⅡ)在日间光较强时明显降低,说明发生了光抑制.电子传递速率(ETR)和非光化学猝灭系数(N PQ)随日间光强的增大而升高,表明三叶漆可能通过增强光呼吸和热耗散抵御光抑制、保护光合机构.二元方差分析表明,水分和光强具有明显的交互作用.全自然光下严重干旱的幼苗仍有较高的Pm ax(9.65μm o l.m-2.-s 1),说明三叶漆对干旱和强光具有极强的适应能力,这也是其成为干热河谷植被优势种的重要原因.  相似文献   

4.
光强转换对不同生长环境下桑树叶片光化学效率的影响   总被引:3,自引:0,他引:3  
以桑树品种‘蒙古桑’为试验材料,利用叶绿素荧光技术研究了光强转换对生长在不同光强下的桑树叶片实际光化学效率(ΦPSⅡ)、电子传递速率(ETR)和非光化学淬灭(NPQ)的影响,分析了非光化学淬灭(NPQ)3个组分的变化.结果表明:当光强从黑暗或弱光转换到自然光条件下,自然光桑树叶片的光量子转化效率高于弱光叶片,ΦPSⅡ、ETR诱导平衡较快,NPQ诱导呈先升后降趋势.自然光叶片在强光下状态转换淬灭组分(qT)占NPQ的18%,而弱光叶片qT仅占NPQ的7%.与弱光桑树叶片相比,自然光桑树叶片可以通过较高的光量子转化效率和较强的调节激发能在PSⅠ和PSⅡ之间的分配能力来适应光强的变化.  相似文献   

5.
 研究了生长于不同光照条件下(100%、25%和8%光强)热带雨林冠层树种绒毛番龙眼(Pometia tomentosa)和中层树种滇南风吹楠(Horsfieldia tetratepala)幼苗的光合能力、热耗散、活性氧和保护性酶的活性。结果表明,绒毛番龙眼的最大光合速率随着生长光强的增加而提高,而滇南风吹楠在全光条件下的最大光合速率反比25%光照条件下的低。全光条件下两个树种光系统II的最大光化学效率(Fv/Fm)都显著降低,表明发生了长期光抑制。当把生长于遮荫条件下的幼苗移到全光下,从凌晨到中午随着光强的增加光抑制加剧,日落时生长于8%光照条件下的绒毛番龙眼及生长于8%和25%光照条件下的滇南风吹楠的光抑制不能完全恢复。非光化学猝灭对光强的响应曲线表明,随着生长光强的增加滇南风吹楠的热耗散能力增强,而生长在全光和25%光照条件下的绒毛番龙眼的热耗散能力都比滇南风吹楠的弱。两个树种叶片中O-[]·2、H2O2含量、SOD和CAT活性均随着生长光强的增加而提高;在同一光照条件下,绒毛番龙眼叶片中O-[]·2、H2O2含量、SOD和CAT活性显著高于滇南风吹楠。上述结果表明,在光抑制条件下,冠层树种绒毛番龙眼较大程度通过提高保护性酶的活性来保护光合机构免受损伤,而中层树种滇南风吹楠却较大程度通过增强非光化学猝灭来耗散过量光能;滇南风吹楠对强光的适应性差。  相似文献   

6.
以气体交换和叶绿素荧光测定相结合的方法研究了亚热带自然林乔木荷树、黧蒴和林下灌木九节、罗伞幼苗的光合电子传递及激发能利用的分配对生长光强的适应特性。4种植物生长于100%、36%和16%的自然光下8个月,叶片的光化学速率和热能耗散速率随光强增大而提高,热能耗散占总的光能吸收的比例也因光强不同而改变,16%光下的相对热耗散率约为40%~45%,100%自然光下增大至50%~75%。叶片总的非环式电子流速率及其分配到光呼吸的比例在100%光强下最高。乔木和灌木的电子传递和光能分配特性在16%光下相似,在100%光下差别较明显。除灌木种有较高的热耗散比例之外,其余的参数皆比乔木的低。结果表明乔木与灌木皆可通过提高激发能热耗散比例和提高光合电子传递向光呼吸的比例来适应于高光强条件。  相似文献   

7.
叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制   总被引:9,自引:0,他引:9  
研究了大豆叶片逐步展开过程中的色素组成、气体交换、荧光动力学以及叶片角度等特性。随着叶片展开程度的增加 ,叶绿素含量和叶绿素 a/ b比值增加 ;光合速率 (Pn)也增加 ,揭示叶片展开过程中光合机构是逐步完善的。自然状态下 ,不同展开程度的叶片均未发生明显的光抑制 ;但将叶片平展并暴露在 12 0 0μmol/ (m2 · s)光下时幼叶发生严重的光抑制 ,伴随叶面积的增加光抑制程度减轻。强光下 ,尽管幼叶光呼吸 (Pr)的测定值较低 ,但幼叶光呼吸与总光合之比 (Pr/ Pm)较高。将叶片平展置于强光下时 ,幼叶的实际光化学效率 (ΦPSII)明显下调 ,非光化学猝灭 (NPQ)大幅增加 ;幼叶叶黄素库较大 ,光下积累较多的脱环氧化组分 ,揭示幼叶依赖叶黄素循环的热耗散增强。自然条件下测量叶片角度 ,观察到在叶片展开过程中叶柄夹角逐渐增加 ;日动态过程中幼叶的悬挂角随光强增加而明显减小 ,完全展开叶的悬挂角变化幅度很小。叶片角度的变化使实际照射到幼叶叶表的光强减少。推测较强的光呼吸、依赖叶黄素循环的热耗散以及较大的叶角变化可能是自然状态下幼叶未发生严重光抑制的原因  相似文献   

8.
光质和光强均是影响植物光合作用的重要外部因素,该文以菜豆(Phaseolus vulgaris)为材料,通过叶绿素荧光技术比较研究了菜豆叶片在不同光强的红光和蓝光下叶绿素荧光特性的变化规律。结果表明:随着红光和蓝光光强的增加,菜豆叶片的光适应下的最大光化学效率(Fv'/Fm')呈下降趋势,但与在红光下相比,蓝光下叶片的Fv'/Fm'值较高。随着蓝光光强的增加,菜豆叶片PSⅡ实际光化学效率(Y(Ⅱ))和光化学猝灭系数(q P和q L)先呈上升趋势之后逐渐趋于平稳;而随着红光光强的增加,以上参数呈下降趋势。随着红光和蓝光光强的增加,非光化学猝灭系数(NPQ)、相对电子传递速率(ETR)以及调节性能量耗散的量子产量Y(NPQ)均呈上升趋势,但与在红光下相比,蓝光下叶片NPQ和Y(NPQ)的值较低,而ETR值较高。非调节性能量耗散产量Y(NO)随着红光光强增加而呈上升趋势,而随着蓝光光强增加呈下降趋势。综上可见,随着光强的增加菜豆叶片的光化学效率呈降低趋势,但叶片在蓝光下的光化学吸收和利用效率高于红光。研究结果可为植物对光强和光质的响应提供一定的参考。  相似文献   

9.
濒危植物银杉幼树对生长光强的季节性光合响应   总被引:30,自引:1,他引:29  
银杉(Cathayaargyrophylla)是我国松科中特有的单种属植物,被认为处于濒危状态。在对银杉群落多年调查研究的基础上,针对银杉幼树生长过程对光强的需求特性,我们开展了银杉幼树对光的适应性研究。试验在人工培育的银杉苗圃地,采用遮荫的方法设置不同的光环境处理(100%、45%和3%自然光强),利用气体交换技术和叶绿素荧光技术测定了3种光强下银杉叶片光合生理指标的变化,探讨了不同光环境下银杉幼树光合能力在夏季和冬季的变化及其对生长光强的响应等。结果表明:在夏季银杉生长旺盛时期,遮荫导致叶片最大光合速率(Pnmax)、羧化效率(CE)下降,但不同叶龄叶片的下降幅度不同。随生长光强的下降,银杉幼树的光补偿点(LCP)和光饱和点(LSP)有所降低,但全晴天时,低光强(3%自然光强)条件下实际的光辐射量高于当年生叶片光补偿点的累积时间约6h,而且与光饱和的区域相差极大,造成全天碳同化量低,同化物累积少,严重影响了银杉幼树的正常生长。在不同处理中全光强条件下银杉幼树长势最好,45%光强条件下幼树生长减慢。冬季银杉最大光合速率(Pnmax)、羧化效率(CE)值均低于夏季,光补偿点(LCP)和光饱和点(LSP)也较夏季降低。全光照条件下无论是当年生叶片和一年生叶片,在冬季均出现了轻微光抑制现象,适度遮荫有利于银杉抵御冬季光抑制。无论在遮荫或不遮荫条件下,冬季银杉叶片将所吸收的相对过剩光能通过非辐射途径耗散出去,表现出一种光保护策略。  相似文献   

10.
热带雨林三种树苗叶片光合机构对光强的适应   总被引:26,自引:10,他引:16  
对生长在不同光强(自然日光的8%,25%,50%)下西双版纳热带雨林3种木本植物团花(Anthocephalus chinensis)、玉蕊(Barringtonia pendala)和藤黄(Garrcinia hanburyi)幼苗光合机构的研究表明,随着生长光强的升高,植物叶片的光饱和点、补偿点、净光合速率和非光化学淬灭系数(NPQ)升高,而表现量子效率(AQY)、有效光化学量子产量(Fv/Fm)、光化学淬灭系数(qP)下降.在抗氧化系统中,超氧化物歧化酶(SOD)、抗坏血酸过氧化酶(APX)活性随着光强的升高而升高,而过氢化物酶(CAT)活性与生长光强的变化不一致.抗坏血酸(AsA)含量随着光强的升高而急剧上升。最能反映PFD的变化.可以认为,除与叶黄素循环有关的热耗散增大之外,植物叶片抗氧化系统的加强也是响应强光的一种保护措施.  相似文献   

11.
The photosynthetic characteristics ofCycas micronesica K.D. Hill were studied from August 1998 until February 1999 using chlorophyll fluorescence and gas-exchange techniques to determine the responses to long-term shade of 35% ambient light transmission, followed by the transfer of shade-grown leaves into full-sun conditions. The shade-grown leaves exhibited increased photosynthetic light use efficiency and effective quantum efficiency of photosystem II (PS II) and decreased photosynthetic light saturation point and dark respiration when compared with leaves grown in full sun. Shade was removed from shade-grownC. micronesica leaves during midday on December 14, 1998, when effective quantum efficiency of shaded leaves was 45% greater than that of sun leaves. Following one hour in full sun, effective quantum efficiency of the shade-grown leaves declined to below that of the sun-grown leaves. After receiving full sunlight for the rest of the photoperiod, maximum quantum efficiency of PS II photochemistry for shade-grown leaves was below that of sun-grown leaves throughout the night. The damage caused by excessive light to shade-grown leaves progressed for the first three days after shade removal. On day 3, effective quantum efficiency during midday was 30%, net photosynthesis was 47%, apparent quantum yield was 65%, and light compensation point was 136% of that for sun-grown leaves. After day 3, the relationship between full-sun leaves and the previously shaded leaves for these response variables was relatively stable. Two months following removal of shade, the previously shaded leaves continued to exhibit damage from high light. These results have application to transplanting cycad plants from a shaded nursery to a field site or, after tropical cyclones, where protective forest canopy cover has been destroyed and cycad plants in the forest subcanopy are abruptly exposed to full-sun conditions.  相似文献   

12.
High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40?% ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.  相似文献   

13.
Light-saturated photosynthetic rates at air levels of carbon dioxide were measured about weekly in upper canopy leaves of two soybean cultivars grown at stand densities of 40 and 100 plants per square meter. Early in the season, when leaf area indices differed between stand densities, plants of both cultivars grown at high stand density had photosynthetic rates which averaged 23% lower than plants at low stand density. Later in the season, when there were no differences in leaf area index between stand densities, there were no differences in photosynthetic rates in the cultivar Kent, but rate differences of about 14% persisted in the cultivar Williams. In Williams mainstem leaves emerged into full sunlight later in their development at high than at low stand density. In both cultivars the oldest fully exposed leaves were photosynthetically immature for much of the season, as higher rates could be achieved by lower leaves which were shaded in situ. The results identify shading of young developing leaves and photosynthetic immaturity of fully exposed leaves as factors limiting canopy photosynthesis in soybeans, and indicate cultivar differences in how much high stand density reduces photosynthetic capacity.  相似文献   

14.
 We studied photosynthetic acclimation of eastern hemlock [Tsuga canadensis (L.) Carr.] seedlings in the first month after sudden exposure of shade-grown seedlings to full sunlight. In a greenhouse experiment, seedlings were grown under full sun or 80% shade, and after 7 months, a sample of the shaded trees was transferred to full sun in the greenhouse. Photosynthetic responses of shaded, transferred, and sun trees were followed over the course of 26 days to track short to medium-term acclimation responses. A partial acclimation of photosynthesis at high light occurred in pre-existing (formed in the previous environment) and new foliage of transferred seedlings. This was associated with non-stomatal limitations to photosynthesis. Pre-existing foliage of transferred plants had a prolonged reduction in the ratio of variable to maximal fluorescence, and a limited capacity to adjust photochemical quenching or photosystem II quantum yield in the light to increasing light intensity compared to sun foliage, and apparently had some difficulty sustaining non-photochemical quenching. Seedling survival was only 58% among transferred seedlings, compared to 80% and 100% in the shade or sun groups, respectively. Photosystem II quantum yield in the light, and photochemical and non-photochemical quenching were similar between newly formed foliage of transferred and sun plants. These findings indicate that eastern hemlock depends strongly on the production of new foliage for photosynthetic adjustments to high light, and that development of photosynthetic competence may be a gradual process that occurs over successive foliar production cycles. Received: 12 May 1998 / Accepted: 27 July 1998  相似文献   

15.
在室内测定了分别栽培于全光照和20%光照条件下的垂枝桦Betulapendula,欧洲水青冈Fagussylvatica和欧洲白栎Quercusrobur幼苗叶片的光合作用-光响应曲线、叶片气孔导度、胞间二氧化碳浓度、水分利用效率,叶绿素含量和氮素含量,并分析叶片叶绿素含量和净光合速率的回归关系.20%光照条件引起净光合速率的光饱和点下降,叶片气孔导度和水分利用效率以及单位叶面积叶绿素含量降低,叶片的光合物质积累减少,但氮素含量上升.回归分析结果表明,叶片叶绿素含量与净光合速率成正相关.3种植物的幼苗对荫蔽条件有一定的适应性,其中B.pendula和Q.robur的耐荫能力比Fsylvatica强.  相似文献   

16.
Summary Seedlings of the Caesalpinoids Hymenaea courbaril, H. parvifolia and Copaifera venezuelana, emergent trees of Amazonian rainforest canopies, and of the Araucarian conifers Agathis microstachya and A. robusta, important elements in tropical Australian rainforests, were grown at 6% (shade) and 100% full sunlight (sun) in glasshouses. All species produced more leaves in full sunlight than in shade and leaves of sun plants contained more nitrogen and less chlorophyll per unit leaf area, and had a higher specific leaf weight than leaves of shade plants. The photosynthetic response curves as a function of photon flux density for leaves of shade-grown seedlings showed lower compensation points, higher quantum yields and lower respiration rates per unit leaf area than those of sun-grown seedlings. However, except for A. robusta, photosynthetic acclimation between sun and shade was not observed; the light saturated rates of assimilation were not significantly different. Intercellular CO2 partial pressure was similar in leaves of sun and shade-grown plants, and assimilation was limited more by intrinsic mesophyll factors than by stomata. Comparison of assimilation as a function of intercellular CO2 partial pressure in sun- and shade-grown Agathis spp. showed a higher initial slope in leaves of sun plants, which was correlated with higher leaf nitrogen content. Assimilation was reduced at high transpiration rates and substantial photoinhibition was observed when seedlings were transferred from shade to sun. However, after transfer, newly formed leaves in A. robusta showed the same light responses as leaves of sun-grown seedlings. These observations on the limited potential for acclimation to high light in leaves of seedlings of rainforest trees are discussed in relation to regeneration following formation of gaps in the canopy.  相似文献   

17.
珍稀树种红花玉兰对其华南原产地的自然环境有良好的适应性, 但在华北地区却生长不良。通过对红花玉兰在华北地区一个生长季内对三种光照水平(100%、70%、40%全光照)的光合和生长响应分析, 结果表明:在70%全光照条件下, 红花玉兰幼苗的净光合速率、光饱和点、株高、基径、根生物量和茎生物量均达到最高水平。随着光照强度的减弱, 暗呼吸速率、光补偿点、比叶重量、叶片厚度和密度显著降低, 表观量子效率、最大荧光Fm、可变荧光Fv、Fm/Fo(Fo为初始荧光)、Fv/Fo、Fv/Fm、叶绿素含量、叶面积和叶柄角度均显著增大。说明70%全光照最适于一年生红花玉兰幼苗在华北地区的生长, 全光照和40%全光照条件下幼苗则因光量的过剩和不足而生长不良。因此建议将红花玉兰栽植在林缘或林窗地带, 可为这一珍稀濒危树种在华北地区的引种提供有利的适生光照环境。  相似文献   

18.
Photosynthetic rate (Pn) and the partitioning of noncyclic photosynthetic electron transport to photorespiration (Jo) in seedlings of four subtropical woody plants growing at three light intensities were studied in the summer time by measurements of chlorophyll fluorescence and CO2 exchange. Except Schima superba, an upper canopy tree species, the tree species Castanopsis fissa and two understory shrubs Psychotria rubra, Ardisia quinquegona had the highest Pn at 36% of sunlight intensity. The total photosynthetic electron transport rate (JF) and the ratio of Jo/JF were elevated in leaves under full sunlight. Jo/JF ratio reached 0.5-0.6 and coincided with the increasing of oxygenation rate of Rubisco (Vo), the activity of glycolate oxidase and photorespiration rate at full sunlight. It is suggested that an increasing partitioning proportion of photosynthetic electron transport to photorespiration might be one of the protective regulation mechanisms in forest plant under strong summer light and high tempe  相似文献   

19.
Alocasia macrorrhiza plants were grown in 1% and 20% full sunlight, and their leaf anatomical and physiological parameters were measured. Total leaf thickness was 41% greater and mesophyll thickness was 52% greater in high-light leaves than in low-light leaves. This increase in thickness resulted from both increased cell size and number. Maximum leaf photosynthetic capacity was also 66% greater in high- than in low-light leaves. When low-light plants were transferred to high light, the thickness of mature leaves did not increase but the thickness of the first leaf to expand after the transfer was significantly greater than that of the low-light leaves. Thus, only leaves that were still expanding at the time of transfer developed leaf thickness greater than plants remaining in low light. Fully mature leaves showed no change in photosynthetic capacity in response to transfer. Leaves that had just completed expansion at the time of low- to high-light transfer were able to develop slightly higher maximum photosynthetic capacities than older leaves. However, full photosynthetic acclimation to the new light environment did not occur until the second new leaf expanded after transfer. These results are discussed in relation to the timing and mechanisms of whole plant acclimation to increased light.  相似文献   

20.
Summary The effect of full sunlight, 60%, or 90% attenuated light on photosynthetic rate, growth, leaf morphology, dry weight allocation patterns, phenology, and tolerance to clipping was examined in the glasshouse for steppe populations of the introduced grass, Bromus tectorum. The net photosynthetic response to light for plants grown in shade was comparable to responses for plants grown in full sunlight. Plants grown in full sunlight produced more biomass, tillers and leaves, and allocated a larger proportion of their total production to roots than plants grown in shade. The accumulation of root and shoot biomass over the first two months of seedling growth was primarily responsible for the larger size at harvest of plants grown in full sunlight. Plants grown under 60% and 90% shade flowered an average of 2 and 6 weeks later, respectively, than plants grown in full sunlight. Regrowth after clipping was greater for plants grown in full sunlight compared to those grown in shade. Even a one-time clipping delayed flowering and seed maturation; the older the individual when leaf area was removed, the greater the delay in its phenology. Repeated removal of leaf area was more frequently fatal for plants in shade than in full sunlight. For plants originally grown in full sunlight, regrowth in the dark was greater than for shaded plants and was more closely correlated to non-flowering tiller number than to plant size. This correlation suggests that etiolated regrowth is more likely regulated by the number of functional meristems than by differences in the size of carbohydrate pools. Thus, shading reduces the rate of growth, number of tillers, and ability to replace leaf area lost to herbivory for B. tectorum. These responses, in turn, intensify the effect of competition and defoliation for this grass in forests. B. tectorum is largely restricted to forest gaps at least in part because of its inability to acclimate photosynthetically, the influence of shade on resource allocation, and the role of herbivory in exacerbating these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号