首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Abstract: The purpose of these experiments was to determine if cholinergic agents affected the release of acetylcholine (ACh) from a synaptosomal preparation of the guinea pig ileum myenteric plexus. The synaptosomal preparation was first incubated with the precursor [3H]choline; subsequently, release of the stored [3H]ACh was measured. The release was decreased by oxotremorine or exogenous ACh plus hexamethonium and increased by exogenous ACh plus atropine. The nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) evoked release that was inhibited by nicotinic antagonists or muscarinic agonists. Release was stimulated half-maximally by approximately 2 μ m - and maximally by 10 μ m -DMPP. Either in the absence of calcium or at 0°C, DMPP was without effect. The effect of 10 μ m -DMPP was brief, a significant stimulation occurring only within the first 2 min at 37°C. Tetrodotoxin also inhibited excitation by DMPP but not completely. Thus, the release of [3H]ACh appears to be presynaptically modulated, negatively by muscarinic agonists and positively by nicotinic agonists.  相似文献   

2.
Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases.  相似文献   

3.
Abstract

Muscarinic acetylcholine receptors MAChRs from Bovine Tracheal Smooth Muscle (BTSM) plasma membranes are responsible for the cGMP rise and signal-amplitude peaks associated with smooth muscle contraction present in bronchial asthma. These MAChRs bind [3H]QNB and exhibit the classic G Protein Coupled-Receptor (GPCR) behavior towards muscarinic agonist and antagonists that is sensitive to sensitive to GTP analogs. Interestingly, the [3H]QNB binding activity was stimulated by cGMP and ATP, and was enhanced by IBMX and Zaprinast, inhibitors of cGMP-PDE. Cyclic GMP plus ATP affected the agonist-antagonist muscarinic binding activities. Thus, the high affinity agonist (Carbamylcholine) binding sites disappeared, whereas, 4-DAMP, a M3 selective antagonist displayed an additional high affinity-binding site. In contrast, non-selective (atropine) and M2-selective (methoctramine and gallamine) antagonists revealed one low binding site. Moreover, the 4-DAMP-mustard alkylation of the MAChRs blocked the cGMP effect indicating that the M3AChR is the main receptor target of cGMP. Interestingly, these cGMP effects were potentiated by an activator (Sp-8-pCPT-cGMPS), and diminished by an inhibitor (Rp-8-pCPT-CGMPS), of cGMP-dependent protein kinase (PKG-II), which was detected by Western blotting using specific PKG II antibodies. Finally, plasma membrane M3AChRs were phosphorylated in a cGMP-dependent manner and this novel post-translational reversible modification at M3AChRs may act as a feedback mechanism to terminate the cGMP dependent muscarinic signal transduction cascades at the sarcolema of BTSM.  相似文献   

4.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal beta cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1--m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 microM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 microM of methoctramine (M2 antagonist) increased ACh (100 microM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

5.
乙酰胆碱对大鼠体外抗体生成的影响   总被引:2,自引:1,他引:1  
目的:观察不同浓度乙酰胆碱(ACh,10-10~10-5mol/L)对大鼠体外抗体生成的影响,并初步探讨其作用机制,从细胞水平了解乙酰胆碱与免疫功能之间的关系。方法:用体外抗体生成的检测方法,用绵羊红细胞(SRBC)刺激大鼠肠系膜淋巴结B细胞转化成抗体形成细胞(AFC),然后检测其抗体生成量。结果:①10-10~10-7mol/LACh能显著抑制体外抗体生成,其中10-8和10-7mol/LACh的作用较强,而10-6和10-5mol/LACh无明显的抑制作用;②M型胆碱能受体激动剂毛果芸香碱(10-8和10-7mol/L)能明显减弱体外抗体生成,而N型受体激动剂烟碱(10-8和10-7mol/L)没有显著的减弱作用,M型受体拮抗剂阿托品(10-7和10-6mol/L)可完全阻断ACh抑制体外抗体生成的作用;③ACh分别在B细胞用SRBC刺激后3~48h中的6个不同时间与淋巴细胞作用,其抗体生成仍然是减少的。结论:ACh可非浓度依赖性地抑制大鼠的体外抗体生成;此作用可能由B细胞上的M型胆碱能受体介导;且ACh可能主要影响B细胞转化的后期过程。  相似文献   

6.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal β cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1–m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 μM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 μM of methoctramine (M2 antagonist) increased ACh (100 μM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

7.
Bovine adrenal chromaffin cells possess both nicotinic and muscarinic cholinergic receptors, but only nicotinic receptors have heretofore appeared to mediate Ca2+-dependent exocytosis. We have now found that muscarinic receptor stimulation in bovine adrenal chromaffin cells leads to enhanced inositol phospholipid metabolism as evidenced by the rapid (less than 1 min) formation of inositol trisphosphate (IP3) and inositol bisphosphate (IP2). Muscarinic receptor-mediated accumulation of IP3 and IP2 continues beyond 1 min in the presence of LiCl and is accompanied by large increases in inositol monophosphate. Muscarinic receptor stimulation was also found to enhance nicotine-induced catecholamine secretion by 1.7-fold if muscarine was added 30 s before nicotine addition. Moreover, since the muscarinic antagonist atropine reduces acetylcholine-induced secretion, we conclude that muscarinic receptor stimulation somehow primes these cells for nicotinic receptor-mediated secretion, perhaps by causing small nonstimulatory increases in cytosolic free Ca2+ mediated by IP3. Furthermore, we show that small depolarizations of these cells with 10 mM K+, which themselves do not affect basal secretion, also enhance nicotine-induced secretion. Thus, small increases in cytosolic free Ca2+ produced either by physiologic muscarinic receptor stimulation or by small experimental depolarizations with K+ may prime the chromaffin cells for nicotinic receptor-mediated secretion.  相似文献   

8.
(+)-Anatoxin-a (ANTX) stimulated guinea pig ileum contraction with a potency similar to that of acetylcholine (ACh); the stimulation was blocked by tubocurarine, hexamethonium, or atropine. Although the contraction stimulated by ANTX was blocked by atropine, no specific inhibition of the binding of [3H]N-methylscopolamine to ileum membranes was observed in the presence of ANTX. Furthermore, ANTX failed to stimulate the secretion of alpha-amylase from pancreatic acinar cells, a process that is activated by cholinergic agonists at the muscarinic receptors. When the ileum itself was stimulated by ACh, the contraction was not blocked by either hexamethonium or tubocurarine. Preincubation of the ileum with hemicholinium caused a 50% reduction in the ability of ANTX to stimulate contraction. Based upon these data, it was inferred that ANTX binds to postganglionic synaptic nicotinic receptors in the ileum, thus releasing endogenous ACh, which in turn causes ileum contraction by interacting with the postsynaptic muscarinic receptors. It was also observed that thymopentin (TP-5), a pentapeptide corresponding to positions 32-36 of thymopoietin, blocked the stimulation of ileum contraction by ANTX.  相似文献   

9.
Establishment of salivary cell lines retaining normal morphological and physiological characteristics is important in the investigation of salivary cell function. A submandibular gland cell line, SMG-C6, has recently been established. In the present study, we characterized the phosphoinositide (PI)-Ca2+ signaling system in this cell line. Inositol 1,4,5-trisphosphate(1,4,5-IP3) formation, as well as Ca2+ storage, release, and influx in response to muscarinic, alpha1-adrenergic, P2Y-nucleotide, and cytokine receptor agonists were determined. Ca2+ release from intracellular stores was strongly stimulated by acetylcholine (ACh) and ATP, but not by norepinephrine (NA), epidermal growth factor (EGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFalpha). Consistently, 1, 4,5-IP3 formation was dramatically stimulated by ACh and ATP. ACh-stimulated cytosolic free Ca2+ concentration [Ca2+]i increase was inhibited by ryanodine, suggesting that the Ca2+-induced Ca2+ release mechanism is involved in the ACh-elicited Ca2+ release process. Furthermore, ACh and ATP partially discharged the IP3-sensitive Ca2+ store, and a subsequent exposure to thapsigargin (TG) induced further [Ca2+]i increase. However, exposure to TG depleted the store and a subsequent stimulation with ACh or ATP did not induce further [Ca2+]i increase, suggesting that ACh and ATP discharge the same storage site sensitive to TG. As in freshly isolated submandibular acinar cells, exposure to ionomycin and monensin following ACh or TG induced further [Ca2+]i increase, suggesting that IP3-insensitive stores exist in SMG-C6 cells. Ca2+ influx was activated by ACh, ATP, or TG, and was significantly inhibited by La3+, suggesting the involvement of store-operated Ca2+ entry (SOCE) pathway. These results indicate that in SMG-C6 cells: (i) Ca2+ release is triggered by muscarinic and P2Y-nucleotide receptor agonists through formation of IP3; (ii) both the IP3-sensitive and -insensitive Ca2+ stores are present; and (iii) Ca2+ influx is mediated by the store-operated Ca2+ entry pathway. We conclude that Ca2+ regulation in SMG-C6 cells is similar to that in freshly isolated SMG acinar cells; therefore, this cell line represents an excellent SMG cell model in terms of intracellular Ca2+ signaling.  相似文献   

10.
The interaction between the neuropeptide alpha-MSH and the acetylcholinergic system as reflected by changes in cAMP and inositol 1-3-5 triphosphate(IP(3))production was investigated in an in vitro model of striatal slices. The possible involvement of D(1) receptors in cholinergic and alpha-MSH- stimulated cAMP and IP(3) production in slices of rat striatum was also examined, because it has been demonstrated that acetylcholinergic drugs induce endogenous dopamine release in the striatum. alpha-MSH, pilocarpine(PL) and the selective muscarinic M1 agonist McN-A-343 increased cAMP and IP(3) striatal levels, effects blocked by the D(1) antagonist SCH-23390, except for the effects of alpha-MSH on IP(3).The muscarinic M(2) antagonist gallamine (GL) brought about an increase in cAMP levels, an effect blocked by SCH-23390. The M(1) antagonist pirenzepine (Pz) induced a decrease both in cAMP and IP(3) content, and the nicotinic antagonist di-hydro-beta-eritroidine(DBE) only diminished cAMP production. When alpha-MSH and cholinergic agents were simultaneously added, cAMP and IP(3) levels were modified with respect to the values reached when these agents were added alone. An interaction between the acetylcholinergic system and alpha-MSH through M(1) and nicotinic receptors was also observed. These results suggest that the intracellular signaling pathways related to cAMP and IP(3) production gated by alpha-MSH and these cholinergic receptors are probably related. alpha-MSH striatum cAMP IP(3) muscarinic and nicotinic receptors an in vitro model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号