首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.  相似文献   

2.
We report herein, design and synthesis of vinylaminophosphonates, a novel class of compounds as possible cysteine protease inhibitors. The synthesis of vinylaminophosphonates has been accomplished employing Tsuji-Trost reaction as a key step. The synthesized compounds were assayed against papain, a model cysteine protease and some of our synthesized compounds showed IC(50) values in the range of 30-54 μM thereby suggesting that these chemical entities thus could constitute an interesting template for the design of potential novel protease inhibitors.  相似文献   

3.
A novel series of tyrosine-derived HIV protease inhibitors was synthesized and evaluated for in vitro antiviral activity against wild-type virus and two protease inhibitor-resistant viruses. All of the compounds had wild-type antiviral activities that were similar to or greater than several currently marketed HIV protease inhibitors. In addition, a number of compounds in this series were more potent against the drug-resistant mutant viruses than they were against wild-type virus.  相似文献   

4.
A series of 2-sulfonyl-4H-3,1-benzoxazinones was prepared that inhibit C1r protease in vitro. Several compounds were found to be selective for C1r verses the related serine protease trypsin. Selected compounds demonstrated functional activity in a hemolysis assay.  相似文献   

5.
Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai’s cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity.  相似文献   

6.
张帆  马德英  周泓  张悦平 《昆虫知识》2012,49(2):408-413
通过烟粉虱Bemisia tabaci(Gennadius)取食为害诱导棉花防御反应次生代谢物质槲皮素和蛋白酶抑制剂的作用,以及2种次生物质对烟粉虱主要解毒酶羧酸酯酶的诱导表达作用,初步探索棉花防御与害虫反防御策略。结果表明烟粉虱取食对棉叶内槲皮素和蛋白酶抑制剂的诱导表达迅速但短暂,取食后1~3d,对槲皮素的最大诱导表达量为2.09mg/g,对蛋白酶抑制剂的最大诱导表达量为1.85U。同时槲皮素和蛋白酶抑制剂2种植物次生代谢物质在0.005%至1%浓度范围内,均能够诱导烟粉虱体内羧酸酯酶比活力过量表达。在浓度为0.1%时,羧酸酯酶的比活力达到最大值,分别为0.0725OD/30min和0.07825OD/30min;2个处理的剂量效应趋势非常相似。  相似文献   

7.
Comparative QSAR studies on P2/P2' and P1/P1' substituted symmetrical and nonsymmetrical 3-aminoindazole cyclic urea HIV-1 protease inhibitors were performed. The protease inhibitory activity of these compounds was found to decrease with larger and more hydrophobic molecules, whereas the antiviral potency and translation across the cell membrane increases with increase in hydrophobicity and size. These results provide mechanistic insight about the mode of interaction of these compounds with HIV-1 protease receptor and would help in further improving the biological activity.  相似文献   

8.
In an attempt to identify potential HCV NS3 protease inhibitors lead compounds, a series of novel indoles (10a-g) was designed. Molecular modeling study, including fitting to a 3D-pharmacophore model of the designed molecules (10a-g), with HCV NS3 protease hypothesis using catalyst program was fulfilled. Also, the molecular docking into the NS3 active site was examined using Discovery Studio 2.5 software. Several compounds showed significant high simulation docking score and fit values. The designed compounds with high docking score and fit values were synthesized and biologically evaluated in vitro using an NS3 protease binding assay. It appears that most of the tested compounds reveal promising inhibitory activity against NS3 protease. Of these, compounds 10a and 10b demonstrated potent HCV NS3 protease inhibitors with IC50 values of 9 and 12 ??g/mL, respectively. The experimental serine protease inhibitor activities of compounds 10a-g were consistent with their molecular modeling results. Inhibitors from this class have promising characteristics for further development as anti-HCV agents.  相似文献   

9.
Vibrio alginolyticus synthesized an inducible extracellular collagenase in a peptone medium during the stationary growth phase. These cultures also possessed extracellular alkaline serine protease activity. The alkaline protease activity did not require a specific inducer and it was produced in tryptone or minimal media. The collagenase was not produced in either the tryptone or minimal media. The alkaline protease activity was sensitive to catabolite repression by a number of carbon sources, including glucose, and by amino acids and ammonium ions. Cyclic AMP, dibutyryl cyclic AMP and cyclic GMP did not relieve catabolite repression. Histidine and urocanic acid stimulated the production of alkaline protease activity in tryptone and minimal media. Other compounds associated with the histidine utilization (hut) pathway did not increase alkaline protease activity. Histidine reversed the repression of alkaline protease activity by glucose of (NH4)2SO4 in minimal medium. Histidine and the compounds associated with the hut pathway inhibited collagenase production.  相似文献   

10.
Gold compounds form a new class of promising metal-based drugs with a number of potential therapeutic applications, particularly in the fields of anticancer and antimicrobial treatments. Previous research revealed that a group of structurally diverse gold compounds cause conspicuous inhibition of the protease activities of the human proteasome. Given the pharmacological importance of protease inhibition, the present study further explored whether these gold compounds might inhibit a few other proteases that are accepted druggable targets for disease treatment. In particular, four distinct cysteine proteases were considered here: cathepsin B and L that play a primary role in tumor-cell invasion and metastasis; rhodesain, the major cathepsin L-like cysteine protease of Trypanosoma brucei rhodesiense and CPB2.8ΔCTE, a Leishmania mexicana mature cysteine protease. Based on the encouraging results obtained for some of the tested gold compounds on the two parasitic cysteine proteases, especially against CPB2.8ΔCTE, with IC50s in the micromolar range, we next evaluated whether those gold compounds might contrast effectively the growth of the respective protozoa and indeed important antiprotozoal properties were disclosed; on the other hand a certain lack of selectivity was highlighted. Also, no direct or clear correlation could be established between the in vitro antiprotozoal properties and the level of protease inhibition. The implications of these results are discussed in relation to possible pharmaceutical applications.  相似文献   

11.
New organotellurium(IV) compounds with specific cysteine protease inhibitory activity were synthesized. Serine and aspartic protease activity were not affected by any of these compounds. All Te(IV) compounds tested exhibited high specific second-order constant for cathepsin B inactivation. Tellurium(IV) compound 6 was the best inhibitor of the series, showing a second-order constant of 36,000 M(-1)s(-1). This value is about 100-fold higher than the second-order rate for cysteine protease inactivation shown by the historic Te(IV) compound AS 101 (1). The inhibition was irreversible and time and concentration dependent; no saturation kinetics were observed, suggesting a direct bimolecular reaction. The results described in this paper show that the new organotellurium(IV) compounds are powerful inhibitors of cathepsin B, constituting promising potential anti-metastatic agents.  相似文献   

12.
Compounds of a combinatorial monocyclic beta-lactam library were found to be apparently uncompetitive inhibitors of HIV-1 protease, providing lead compounds for a new class of HIV protease inhibitors.  相似文献   

13.
A series of pyrazolone compounds as possible SARS-CoV 3CL protease inhibitors were designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide in which several showed potent inhibition against the 3CL protease. Interestingly, one of the inhibitors was also active against 3C protease from coxsackievirus B3. These inhibitors could be potentially developed into anti-coronaviral and anti-picornaviral agents.  相似文献   

14.
Indinavir (Crivaxan®) is a potent inhibitor of the HIV (human immunodeficiency virus) protease. This enzyme has an important role in viral replication and is considered to be very attractive target for new antiretroviral drugs. However, it becomes less effective due to highly resistant new viral strains of HIV, which have multiple mutations in their proteases. For this reason, we used a lead expansion method to create a new set of compounds with a new mode of action to protease binding site. 1300 compounds chemically diverse from the initial hit were generated and screened to determine their ability to interact with protease and establish their QSAR properties. Further computational analyses revealed one unique compound with different protease binding ability from the initial hit and its role for possible new class of protease inhibitors is discussed in this report.  相似文献   

15.
The first series of peptidyl aldehyde inhibitors that incorporate in their structure a glutamine surrogate has been designed and synthesized based on the known substrate specificity of Norwalk virus 3C protease. The inhibitory activity of the compounds with the protease and with a norovirus cell-based replicon system was investigated. Members of this class of compounds exhibited noteworthy activity both in vitro and in a cell-based replicon system.  相似文献   

16.
HIV-1 protease inhibitors (PI's) bearing 1,3,4-oxadiazoles at the P1' position were prepared by a novel method involving the diastereoselective installation of a carboxylic acid and conversion to the P1' heterocycle. The compounds are picomolar inhibitors of native HIV-1 protease, with most of the compounds maintaining excellent antiviral activity against a panel of PI-resistant strains.  相似文献   

17.
结合分子相似性、药效团和分子对接建立兼顾计算效率和预测准确度的HIV-1蛋白酶抑制剂筛选方法。首先通过对现有HIV-1蛋白酶抑制剂分子进行相似性分析,选取代表性的HIV-1蛋白酶抑制剂作为模板分子,构建和优化药效团模型,并从1万个化合物中优先筛选出500个化合物。而后采用分子对接方法进一步考察化合物与HIV-1蛋白酶结合情况,得到4个新的活性候选化合物,并进行其结合自由能计算和抗突变性分析。结果表明新候选化合物ST025723和HIV-1蛋白酶表现出较好的相互作用和抗突变性,具有深入研究的价值,同时也证明分子相似性、药效团和分子对接相结合能够快速有效地发现新颖活性候选化合物。  相似文献   

18.
Several compounds designed as bisubstrate analogues of protein farnesyltransferase inhibited the prenyl protein-specific protease Rce1, qualifying them as lead structures for a novel class of non-peptidic, non-prenylic inhibitors of this protease.  相似文献   

19.
An outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been recognized as a global health concern. Since, no specific antiviral drug is proven effective for treatment against COVID-19, identification of new therapeutics is an urgent need. In this study, flavonoid compounds were analyzed for its inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. Virtual docking was performed for screening of flavonoid compounds retrieved from PubChem against the main protease of SARS-CoV-2 using COVID-19 docking server. The cut off of dock score was set to >?9 kcal/mol and screened compounds were individually docked against main protease, RNA-dependent RNA polymerase, and spike proteins using AutoDock 4.1 software. Finally, lead flavonoid compounds were subjected to ADMET analysis. A total of 458 flavonoid compounds were virtually screened against main protease target and 36 compounds were selected based on the interaction energy value >?9 kcal/mol. Furthermore, these compounds were individually docked against protein targets and top 10 lead compounds were identified. Among the lead compounds, agathisflavone showed highest binding energy value of ?8.4 kcal/mol against main protease, Albireodelphin showed highest dock score of ?9.8 kcal/mol and ?11.2 kcal/mol against RdRp, and spike proteins, respectively. Based on the high dock score and ADMET properties, top 5 lead molecules such as Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate were identified as potent inhibitors against main protease, RdRp, and spike protein targets of SARS-CoV-2. These all compounds are having non-carcinogenic and non-mutagenic properties. This study finding suggests that the screened compounds include Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate could be the potent inhibitors of SARS-CoV-2 targets.  相似文献   

20.
We have designed and synthesized a novel series of α-amino cyclic boronates and incorporated them successfully in several acyclic templates at the P1 position. These compounds are inhibitors of the HCV NS3 serine protease, and structural studies show that they inhibit the NS3 protease by trapping the Ser-139 hydroxyl group in the active site. Synthetic methodologies and SARs of this series of compounds are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号