首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A series of diaryl ethers were designed and synthesized to discern the structure activity relationships against the two closely related mono-(ADP-ribosyl)transferases PARP10 and PARP14. Structure activity studies identified 8b as a sub-micromolar inhibitor of PARP10 with?~15-fold selectivity over PARP14. In addition, 8k and 8m were discovered to have sub-micromolar potency against PARP14 and demonstrated moderate selectivity over PARP10. A crystal structure of the complex of PARP14 and 8b shows binding of the compound in a novel hydrophobic pocket and explains both potency and selectivity over other PARP family members. In addition, 8b, 8k and 8m also demonstrate selectivity over PARP1. Together, this study identified novel, potent and metabolically stable derivatives to use as chemical probes for these biologically interesting therapeutic targets.  相似文献   

2.
The discovery and SAR of a series of β-aryl substituted pyrrolidine 2H-isoquinolin-1-one inhibitors of Rho-kinase (ROCK) derived from 2 is herein described. SAR studies have shown that aryl groups in the β-position are optimal for potency. Our efforts focused on improving the ROCK potency of this isoquinolone class of inhibitors which led to the identification of pyrrolidine 32 which demonstrated a 10-fold improvement in aortic ring (AR) potency over 2.  相似文献   

3.
In continuation of our research program aiming at developing new potent antimicrobial agents, new series of substituted 3,4-dihydrothieno[2,3-d]pyrimidines was synthesized. The newly synthesized compounds were preliminary tested for their in vitro activity against six bacterial and three fungal strains using the agar diffusion technique. The results revealed that compounds 7, 8a, 10b, 10d and 11b exhibited half the potency of levofloxacine against the Gram-negative bacterium, Pseudomonas aeruginosa, while compounds 5a, 8b, 10c and 12 displayed half the potency of levofloxacine against Proteus Vulgaris. Whereas, compounds 7, 10b, 10d and 11b showed half the activity of ampicillin against the Gram-positive bacterium, B. subtilis. Most of the compounds showed high antifungal potency. Compounds 3, 6, 7, 9b, 10a, 11a, 11b, 15 and 16 exhibited double the potency of clotrimazole against A. fumigatus. While compounds 3, 4, 5a, 5b, 9b, 10a, 10b, 10c, 13, 15, 16 and 18 displayed double the activity of clotrimazole against R. oryazae. Molecular docking studies of the active compounds with the active site of the B. anthracis DHPS, showed good scoring for various interactions with the active site of the enzyme compared to the co-crystallized ligand.  相似文献   

4.
In the current study, twenty-two compounds based upon 3-hydroxy-3-(2-oxo-2-phenylethyl)indolin-2-one nucleus were designed, synthesized and in vitro evaluated for HIV-1 RT inhibition and anti-HIV-1 activity. Compounds 3d, 5c and 5e demonstrated encouraging potency against RT enzyme as well as HIV-1 in low micromolar to nanomolar concentration with good to excellent safety index. Structure activity relationship studies revealed that halogens such as bromo or chloro at 5th the position of oxindole ring remarkably enhanced the potency against RT. Moreover, methoxy or chloro groups at the ortho position of phenyl ring also significantly favored RT inhibition activity. Seven compounds (3b, 3c, 3d, 3e, 5b, 5c and 5e) with better anti-HIV-1 potency were tested against the mutant HIV-1K103N strain. The putative binding mode, as well as interaction patterns of the best active compound 5c with wild HIV-1 RT were studied via docking studies.  相似文献   

5.
6.
In this study, using molecular hybridization approach, fourteen novel 2-(benzyl(4-chlorophenyl)amino)-1-(piperazin-1-yl)ethanone derivatives (7an) were designed as inhibitor of HIV-1 RT. The binding affinity of the designed compounds with HIV-1 RT as well as their drug-likeness behavior was predicted using in-silico studies. All the designed compounds were synthesized, characterized and in-vitro evaluated for HIV-1 RT inhibitory activity, in which tested compounds displayed significant to weak potency against the selected target. Moreover, best active compounds of the series, 7k and 7m inhibited the activity of RT with IC50 values 14.18 and 12.26 μM respectively. Structure Activity Relationship (SAR) studies were also performed in order to predict the influence of substitution pattern on the RT inhibitory potency. Anti-HIV-1 and cytotoxicity studies of best five RT inhibitor (7a, 7d, 7k, 7L and 7m) revealed that, except compound 7d other compounds retained significant anti-HIV-1 potency with good safety index. Best scoring pose of compound 7m was analysed in order to predict its putative binding mode with wild HIV-1 RT.  相似文献   

7.
It is urgent to develop new antiviral agents due to the continuous emergence of drug-resistant strains of influenza virus. Our earlier studies have identified that certain pentacyclic triterpene saponins with 3-O-β-chacotriosyl residue are novel H5N1 virus entry inhibitors. In the present study, a series of C-28 modified 3-O-β-chacotriosyl epiursolic acid derivatives via conjugation with different kinds of sides were synthesized, of which anti-H5N1 activities in A549 cells were evaluated in vitro. Among them, 10 exhibited strongest anti-H5N1 potency at the low-micromole level without cytotoxicity, surpassing the potency of ribavirin. Further mechanism studies of the lead compound 10 based on HI, SPR and molecular modeling revealed that these new 3-epiursolic acid saponins could bind tightly to the viral envelope HA protein, thus blocking the invasion of H5N1 viruses into host cells.  相似文献   

8.
In the course of a β-site APP-cleaving enzyme 1 (BACE1) inhibitor discovery project an in situ synthesis/screening protocol was employed to prepare 120 triazole-linked reduced amide isostere inhibitors. Among these compounds, four showed modest (single digit micromolar) BACE1 inhibition. Our ligand design was based on a potent reduced amide isostere 1, wherein the P2 amide moiety was replaced with an anti-1,2,3-triazole unit. Unfortunately, this replacement resulted in a 1000-fold decrease in potency. Docking studies of triazole-linked reduced amide isostere A3Z10 and potent oxadiazole-linked tertiary carbinamine 2a with BACE1 suggests that the docking poses of A3Z10 and 2a in the active sites are quite similar, with one exception. In the docked structures the placement of the protonated amine that engages D228 differs considerably between 2a and A3Z10. This difference could account for the lower BACE1 inhibition potency of A3Z10 and related compounds relative to 2a.  相似文献   

9.
A small molecule library of N-acyl-substituted 1,2-benzisothiazol-3-one derivatives has been synthesized and evaluated as inhibitors of caspase-3 and -7, in which some of them showed nanomolar potency against caspase-3 and -7 in vitro. Meanwhile, in 10 μM concentration, both compounds 24 and 25 showed significant protection against apoptosis in camptothecin-induced Jurkat T cells system. The docking studies predicted the interactions and binding modes of the synthesized inhibitors in the caspase-3 active site.  相似文献   

10.
We describe a medicinal chemistry approach to the discovery of a novel EP1 antagonist exhibiting high potency and good pharmacokinetics. Our starting point is 1, an EP1 receptor antagonist that exhibits pharmacological efficacy in cystometry models following intravenous administration. Despite its good potency in vitro, the high lipophilicity of 1 is a concern in long-term in vivo studies. Further medicinal chemistry efforts identified 4 as an improved lead compound with good in vitro ADME profile applicable to long term in vivo studies. A rat fracture study was conducted with 4 for 4?weeks to validate its utility in bone fracture healing. The results suggest that this EP1 receptor antagonist stimulates callus formation and thus 4 has potential for enhancing fracture healing.  相似文献   

11.
The design and synthesis of isoxazole 3 is described, a potent JNK inhibitor with two fold selectivity over p38. Optimization of this scaffold led to compounds 27 and 28 which showed greatly improved selectivity over p38 by maintaining the JNK3 potency of compound 3. Extensive SAR studies will be described as well as preliminary in vivo data of the two lead compounds.  相似文献   

12.
A series of C-3 phenyl- and heterocycle-substituted derivatives of C-3 deoxybetulinic acid and C-3 deoxybetulin was designed and synthesized as HIV-1 maturation inhibitors (MIs) and evaluated for their antiviral activity and cytotoxicity in cell culture. A 4-subsituted benzoic acid moiety was identified as an advantageous replacement for the 3′3′-dimethylsuccinate moiety present in previously disclosed MIs that illuminates new aspects of the topography of the pharmacophore. The new analogs exhibit excellent in vitro antiviral activity against wild-type (wt) virus and a lower serum shift when compared with the prototypical HIV-1 MI bevirimat (1, BVM), the first MI to be evaluated in clinical studies. Compound 9a exhibits comparable cell culture potency toward wt virus as 1 (WT EC50 = 16 nM for 9a compared to 10 nM for 1). However, the potency of 9a is less affected by the presence of human serum, while the compound displays a similar pharmacokinetic profile in rats to 1. Hence 9a, the 4-benzoic acid derivative of deoxybetulinic acid, represents a new starting point from which to explore the design of a 2nd generation MI.  相似文献   

13.
We describe here the generation of a lead compound and its optimization studies that led to the identification of a novel GPR119 agonist. Based on a spirocyclic cyclohexane structure reported in our previous work, we identified compound 8 as a lead compound, being guided by ligand-lipophilicity efficiency (LLE), which linked potency and lipophilicity. Subsequent optimization studies of 8 for improvement of solubility afforded representative 21. Compound 21 had no inhibitory activity against six CYP isoforms and showed favorable pharmacokinetic properties and hypoglycemic activity in rats.  相似文献   

14.
In order to discovery autotaxin (ATX) and EGFR dual inhibitors with potential therapeutic effect on IPF-LC, a series of novel tetrahydropyrido[4,3-d]pyrimidine derivatives possessing semicarbazones moiety were designed and synthesized. The preliminary investigation at the cellular level indicated six compounds (7h, 8a, 8c, 8d, 9a and 9d) displayed preferable anti-tumor activities against A549, H1975, MKN-45 and SGC cancer cells. Further enzymatic assay against EGFR kinase identified 8a and 9a as promising hits with IC50 values of 18.0?nM and 24.2?nM. Meanwhile, anti-inflammatory assessment against cardiac fibroblasts (CFs) cell and RAW264.7 macrophages led to the discovery of candidate 9a, which exhibited considerable potency both on inhibition rate of 77% towards CFs and on reducing NO production to 1.05?μM at 10?μg/mL. Simultaneously, 9a indicated preferable potency towards ATX with IC50 value of 29.1?nM. Significantly, a RT-PCR study revealed the function of 9a to down-regulate the mRNA expression of TGF-β and TNF-α in a dose-dependent manner. The molecular docking analysis together with the pharmacological studies validated 9a as a potential ATX and EGFR dual inhibitor for IPF-LC treatments.  相似文献   

15.
γ-Secretase modulators (GSMs) are potentially disease-modifying treatments for Alzheimer’s disease. They selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ-secretase activity, possibly avoiding known adverse effects observed with complete inhibition of the enzyme complex. A cell-based HTS effort identified the sulfonamide 1 as a GSM lead. Lead optimization studies identified compound 25 with improved cell potency, PKDM properties, and it lowered Aβ42 levels in the cerebrospinal fluid (CSF) of Sprague-Dawley rats following oral administration. Further optimization of 25 to improve cellular potency is described.  相似文献   

16.
A series of HIV-1 attachment inhibitors containing a 4,6-diazaindole core were examined in an effort to identify a compound which improved upon the potency and oral exposure of BMS-488043 (2). BMS-488043 (2) is a 6-azaindole-based HIV-1 attachment inhibitor which established proof-of-concept for this mechanism in human clinical studies but required high doses and concomitant administration of a high fat meal to achieve efficacious exposures. Based on previous studies in indole and azaindole scaffolds, SAR investigation was concentrated around the key 7-position in the 4,6-diazaindole series and led to the discovery of molecules with 5- to 20-fold increases in potency and three- to seven-fold increases in exposure over 2 in a rat PK studies.  相似文献   

17.
Chemical optimization of pyrazolopyridine 1, focused on cellular potency, isoform selectivity and microsomal stability, led to the discovery of the potent, selective and orally available PI3Kδ inhibitor 5d. On the basis of its desirable potency, selectivity and pharmacokinetic profiles, 5d was tested in the trinitrophenylated aminoethylcarboxymethyl-Ficoll (TNP-Ficoll)-induced antibody production model, and showed higher antibody inhibition than a 4-fold oral dose of the starting compound 1. These excellent results suggest that 5d is a potential candidate for further studies in the treatment of autoimmune diseases and leukocyte malignancies.  相似文献   

18.
The paper describes the SAR/SPR studies that led to the discovery of phenoxy cyclopropyl phenyl acetamide derivatives as potent and selective GPR119 agonists. Based on a cis cyclopropane scaffold discovered previously, phenyl acetamides such as compound 17 were found to have excellent GPR119 potency and improved physicochemical properties. Pharmacokinetic data of compound 17 in rat, dog and rhesus will be described. Compound 17 was suitable for QD dosing based on its predicted human half-life, and its projected human dose was much lower than that of the recently reported structurally-related benzyloxy compound 2. Compound 17 was selected as a tool compound candidate for NHP (Non-Human Primate) efficacy studies.  相似文献   

19.
Efforts to refine the SAR of the piperazinyl-glutamate-pyridines for more potent analogs with improved pharmacokinetic profiles are described. Exploring substituted piperidines and other ring systems at the 4-pyridyl position led to compounds with improved potency and pharmacokinetic properties over candidate I. In particular, compounds 4t and 5t were discovered with a 10-fold improvement over potency and improved pharmacokinetic profiles in both the rat and dog.  相似文献   

20.
A series of (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety were synthesized and identified as novel xanthine oxidase inhibitors. Among them, the most promising compounds 1h and 1k were obtained with IC50 values of 0.6 μM and 0.8 μM, respectively, which were more than 10-fold potent compared with allopurinol. The Lineweaver-Burk plot revealed that compound 1h acted as a mixed-type xanthine oxidase inhibitor. SAR analysis showed that the benzaldehyde moiety played a more important role than the anthraquinone moiety for inhibition potency. The basis of significant inhibition of xanthine oxidase by 1h was rationalized by molecular modeling studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号