首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In addition to age and developmental progress, leaf senescence and senescence-associated genes (SAGs) can be induced by other factors such as plant hormones, pathogen infection and environmental stresses. The relationship is not clear, however, between these induced senescence processes and developmental leaf senescence, and to what extent these senescence-promoting signals mimic age and developmental senescence in terms of gene expression profiles. By analysing microarray expression data from 27 different treatments (that are known to promote senescence) and comparing them with that from developmental leaf senescence, we were able to show that at early stages of treatments, different hormones and stresses showed limited similarity in the induction of gene expression to that of developmental leaf senescence. Once the senescence process is initiated, as evidenced by visible yellowing, generally after a prolonged period of treatments, a great proportion of SAGs of developmental leaf senescence are shared by gene expression profiles in response to different treatments. This indicates that although different signals that lead to initiation of senescence may do so through distinct signal transduction pathways, senescence processes induced either developmentally or by different senescence-promoting treatments may share common execution events.  相似文献   

2.
Large-scale identification of leaf senescence-associated genes   总被引:27,自引:0,他引:27  
Leaf senescence is a form of programmed cell death, and is believed to involve preferential expression of a specific set of "senescence-associated genes" (SAGs). To decipher the molecular mechanisms and the predicted complex network of regulatory pathways involved in the senescence program, we have carried out a large-scale gene identification study in a reference plant, Arabidopsis thaliana. Using suppression subtractive hybridization, we isolated approximately 800 cDNA clones representing SAGs expressed in senescing leaves. Differential expression was confirmed by Northern blot analysis for 130 non-redundant genes. Over 70 of the identified genes have not previously been shown to participate in the senescence process. SAG-encoded proteins are likely to participate in macromolecule degradation, detoxification of oxidative metabolites, induction of defense mechanisms, and signaling and regulatory events. Temporal expression profiles of selected genes displayed several distinct patterns, from expression at a very early stage, to the terminal phase of the senescence syndrome. Expression of some of the novel SAGs, in response to age, leaf detachment, darkness, and ethylene and cytokinin treatment was compared. The large repertoire of SAGs identified here provides global insights about regulatory, biochemical and cellular events occurring during leaf senescence.  相似文献   

3.
To identify senescence-associated genes (SAGs) in rice leaves, senescence was induced by transferring rice seedlings into darkness. Senescence up-regulated cDNAs were obtained by PCR-based subtractive hybridization. Among 14 SAG clones characterized, 11 were found to be associated with both dark-induced and natural leaf senescence. Three clones were associated only with dark-induced leaf senescence. The possible physiological roles of these SAGs during rice leaf senescence are discussed.  相似文献   

4.
Ethylene can only induce senescence in leaves that have reached a defined age. Thus, ethylene-induced senescence depends on age-related changes (ARCs) of individual leaves. The relationship between ethylene and age in the induction of leaf senescence was tested in Arabidopsis Ler-0, Col-0, and Ws-0 accessions as well as in eight old (onset of leaf death) mutants, isolated from the Ler-0 background. Plants with a constant final age of 24 d were exposed to ethylene for 3-16 d. The wild-type accessions showed a common response to the ethylene treatment. Increasing ethylene treatments of 3-12 d caused an increase in the number of yellow leaves. However, an ethylene exposure time of 16 d resulted in a decrease in the amount of yellowing. Thus, ethylene can both positively and negatively influence ARCs and the subsequent induction of leaf senescence, depending on the length of the treatment. The old mutants showed altered responses to the ethylene treatments. old1 and old11 were hypersensitive to ethylene in the triple response assay and a 12-d ethylene exposure resulted in a decrease in the amount of yellow leaves. The other six mutants did not show a decrease in yellow leaves with an ethylene treatment of 16 d. The results revealed that the effect of ethylene on the induction of senescence can be modified by at least eight genes.  相似文献   

5.
He Y  Tang W  Swain JD  Green AL  Jack TP  Gan S 《Plant physiology》2001,126(2):707-716
The last phase of leaf development, generally referred to as leaf senescence, is an integral part of plant development that involves massive programmed cell death. Due to a sharp decline of photosynthetic capacity in a leaf, senescence limits crop yield and forest plant biomass production. However, the biochemical components and regulatory mechanisms underlying leaf senescence are poorly characterized. Although several approaches such as differential cDNA screening, differential display, and cDNA subtraction have been employed to isolate senescence-associated genes (SAGs), only a limited number of SAGs have been identified, and information regarding the regulation of these genes is fragmentary. Here we report on the utilization of enhancer trap approach toward the identification and analysis of SAGs. We have developed a sensitive large-scale screening method and have screened 1,300 Arabidopsis enhancer trap lines and have identified 147 lines in which the reporter gene GUS (beta-glucuronidase) is expressed in senescing leaves but not in non-senescing ones. We have systematically analyzed the regulation of beta-glucuronidase expression in 125 lines (genetically, each contains single T-DNA insertion) by six senescence-promoting factors, namely abscisic acid, ethylene, jasmonic acid, brassinosteroid, darkness, and dehydration. This analysis not only reveals the complexity of the regulatory circuitry but also allows us to postulate the existence of a network of senescence-promoting pathways. We have also cloned three SAGs from randomly selected enhancer trap lines, demonstrating that reporter expression pattern reflects the expression pattern of the endogenous gene.  相似文献   

6.
Chinese flowering cabbage is one of the main leafy vegetables produced in China. They have a rapid leaf yellowing due to chlorophyll degradation after harvest that limits their marketing. In the present study, leaf senescence of the cabbages was manipulated by ethylene and 6-benzyl aminopurine (6-BA) treatment to investigate the correlation of leaf senescence and chlorophyll degradation related to gene expression/activities in the darkness. The patterns of several senescence associated markers, including a typical marker, the expression of senescence-associated gene SAG12, demonstrated that ethylene accelerated leaf senescence of the cabbages, while 6-BA retarded this progress. Similar to the trends of BrSAG12 gene expression, strong activation in the expression of three chlorophyll degradation related genes, pheophytinase (BrPPH), pheophorbide a oxygenase (BrPAO) and red chlorophyll catabolite reductase (BrRCCR), was detected in ethylene treated and control leaves during the incubation, while no evident increase was recorded in 6-BA treated leaves. The overall dynamics of Mg-dechelatase activities in all treatments displayed increasing trends during the senescence process, and a delayed increase in the activities was observed for 6-BA treated leaves. However, chlorophyllase activity as well as the expression of BrChlase1 and BrChlase2 decreased with the incubation in all treatments. Taken together, the expression of BrPPH, BrPAO and BrRCCR, and the activity of Mg-dechelatase was closely associated with the chlorophyll degradation during the leaf senescence process in harvested Chinese flowering cabbages under dark conditions.  相似文献   

7.
It has long been known that leaf senescence can be induced in many plant species by detaching leaves and placing them in the darkness. It recently has been shown that entire Arabidopsis plants placed in the darkness are not induced to senesce, as judged by visible yellowing and certain molecular markers. Here, we show that when individual Arabidopsis leaves are darkened, but not when entire plants are darkened, senescence is induced in the covered leaves. This induction of senescence is highly localized. The phenomenon is leaf age dependent in that it occurs more rapidly and strongly in older leaves than in younger ones, as is the case with many forms of induced senescence. Whole adult plants placed in darkness, in contrast, show delayed senescence, although seedlings lacking primary leaves do not. These observations imply that the light status of the entire plant affects the senescence of individual leaves. A model summarizing the results is presented.  相似文献   

8.
Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.  相似文献   

9.
10.
Previously, Narumi et al. (2005) generated chrysanthemum plants transformed with a mutated ethylene receptor gene (mDG-ERS1(etr1-4<), and showed that thein vitro plantlets of the transformants grown aseptically in a small plastic container had a reduced sensitivity to ethylene resulting in reduced leaf yellowing after exposure to exogenous ethylene. In the present study we evaluated ethylene sensitivity of the transformants using soil-grown mature plants. When the shoots detached from soil-grown plants were treated with exogenous ethylene under continuous light, leaf yellowing (senescence) was delayed in the transformants as compared with the non-transformed plants. Furthermore, when the detached shoots were kept in darkness without ethylene treatment, the transformants showed reduced senescence as compared with those of the non-transformed plants. These results demonstrated that the mutated ethylene receptor genemDG-ERS1(etr1-4) could confer reduced sensitivity to ethylene in the leaves of mature chrysanthemum plants. This gene may be useful to generate transgenicCompositae vegetables with leaves green for a longer time and thus having a longer shelf life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号