首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Ring cleavage and degradative pathway of cyanuric acid in bacteria.   总被引:11,自引:0,他引:11       下载免费PDF全文
The degradative pathway of cyanuric acid [1,3,5-triazine-2,4,6(1H,3H,5H)-trione] was examined in Pseudomonas sp. strain D. The bacterium grew with cyanuric acid, biuret, urea or NH4+ as sole source of nitrogen, and each substrate was entirely metabolized concomitantly with growth. Enzymes from strain D were separated by chromatography on DEAE-cellulose and three reactions were examined. Cyanuric acid (1 mol) was converted stoichiometrically into 1.0 mol of CO2 and 1.1 mol of biuret, which was conclusively identified. Biuret (1 mol) was converted stoichiometrically into 1.1 mol of NH4+, about 1 mol of CO2 and 1.0 mol of urea, which was conclusively identified. Urea (1 mol) was converted into 1.9 mol of NH4+ and 1.0 mol of CO2. The reactions proceeded under aerobic or anoxic conditions and were presumed to be hydrolytic. Data indicate that the same pathway occurred in another pseudomonad and a strain of Klebsiella pneumoniae.  相似文献   

2.
Pseudomonas sp. strain A grew with 2-chloro-1,3,5-triazine-4,6-diamine as the sole and growth-limiting source of nitrogen. The substrate was utilized quantitatively and concomitantly with growth and with excretion of a product which was identified as 2-chloro-4-amino-1,3,5-triazine-6(5H)-one. The reaction yielded 1 mol of organic product and 1 mol of NH4+ per mol of substrate.  相似文献   

3.
Pseudomonas sp. strain A grew with 2-chloro-1,3,5-triazine-4,6-diamine as the sole and growth-limiting source of nitrogen. The substrate was utilized quantitatively and concomitantly with growth and with excretion of a product which was identified as 2-chloro-4-amino-1,3,5-triazine-6(5H)-one. The reaction yielded 1 mol of organic product and 1 mol of NH4+ per mol of substrate.  相似文献   

4.
1. The degradative pathway of melamine (1,3,5-triazine-2,4,6-triamine) was examined in Pseudomonas sp. strain A. 2. The bacterium grew with melamine, ammeline, ammelide, cyanuric acid or NH+4 as sole source of nitrogen, and each substrate was entirely metabolized. Utilization of ammeline, ammelide, cyanuric acid or NH+4 was concomitant with growth. But with melamine as substrate, a transient intermediate was detected, which was identified as ammeline by three methods. 3. Enzymes from strain A were separated by chromatography on DEAE-cellulose, and four activities were examined. 4. Melamine was converted stoichiometrically into equimolar amounts of ammeline and NH+4. 5. Ammeline was converted stoichiometrically into equimolar amounts of ammelide and NH+4; ammelide was identified by four methods. 6. Ammelide was converted stoichiometrically into equimolar amounts of cyanuric acid and NH+4; cyanuric acid was identified by four methods. 7. Cyanuric acid was converted by an enzyme preparation into an unidentified product with negligible release of NH+4. 8. The specific activities of the degradative enzymes (greater than or equal to 0.3 mkat/kg of protein) were high enough to explain the growth rate of the organism. 9. The bacterium converted 0.4 mM-melamine anaerobically into 2.3 mM-NH+4. 10. Two other pseudomonads and two strains of Klebsiella pneumoniae were also examined, with similar results. 11. The degradative pathway of melamine appears to be hydrolytic, and proceeds by three successive deaminations to cyanuric acid, which is further metabolized.  相似文献   

5.
A mixed microbial culture capable of metabolizing the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was obtained from soil enrichments under aerobic and nitrogen-limiting conditions. A bacterium, Stenotrophomonas maltophilia PB1, isolated from the culture used RDX as a sole source of nitrogen for growth. Three moles of nitrogen was used per mole of RDX, yielding a metabolite identified by mass spectroscopy and 1H nuclear magnetic resonance analysis as methylene-N-(hydroxymethyl)-hydroxylamine-N'-(hydroxymethyl)nitroamin e. The bacterium also used s-triazine as a sole source of nitrogen but not the structurally similar compounds octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, cyanuric acid, and melamine. An inducible RDX-degrading activity was present in crude cell extracts.  相似文献   

6.
Ametryne and Prometryne as Sulfur Sources for Bacteria   总被引:2,自引:2,他引:0       下载免费PDF全文
Bacteria were isolated that could utilize quantitatively the s-triazine herbicide prometryne [N,N′ -bis(1-methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine] or ametryne [N-ethyl-N′-(1-methylethyl)-6-(methylthio)-1,3,5-triazine- 2,4-diamine], or both, as a sole source of sulfur for growth. The success of enrichments depended on previous exposure of the soil inoculum to s-triazine herbicides. Deaminoethylametryne [4-(1-methylethyl)amino-6-(methylthio)-1,3,5-triazine-2-(1H)-one], methylsulfonic acid, and sodium sulfate could also be used as sulfur sources. Utilization of a compound was quantified as the growth yield per mole of sulfur supplied. Yields were about 6 kg of protein per mol of sulfur. The product of the desulfuration of an s-triazine was identified as the corresponding hydroxy-derivative. This is the first substantiated report of the utilization of these s-triazines as sulfur sources by bacteria.  相似文献   

7.
Pseudomonas aeruginosa PAO1 was able to utilize several aromatic biogenic amines as sole sources of carbon or nitrogen. These included the phenethylamines tyramine and dopamine and the phenethanolamines octopamine, synephrine, and norepinephrine. Initial catabolism of the phenethylamines was mediated by a membrane-bound tyramine dehydrogenase which produced 4-hydroxyphenylacetaldehyde (4HPAL) with tyramine as the substrate. The enzyme was induced by growth with both classes of amines. Initial catabolism of octopamine (except when present as the sole source of carbon and nitrogen) was mediated by a soluble enzyme with activity against the phenethanolamines but not against tyramine or dopamine. The product of the reaction with octopamine as substrate was also 4HPAL. Addition of NAD to reaction mixtures yielded 4-hydroxyphenylacetic acid and NADH. These activities, octopamine hydrolyase and 4-HPAL dehydrogenase (measured as a combined activity, OCAH-4HPALDH), were only induced by growth with phenethanolamines. However, the combined activities were not observed in extracts from cells grown with octopamine as the sole source of carbon and nitrogen, suggesting that an alternate pathway is used under this growth condition. Two independently isolated mutant strains were unable to utilize tyramine as a sole source of carbon or nitrogen. These mutants were also unable to utilize dopamine but grew at wild-type rates on the phenethanolamines. The mutations were mapped at about 70 min on the PAO1 chromosome with the chromosome-mobilizing plasmid R68.45, and both were linked to the catA1, mtu-9002, tyu-9009, and puuE mutations. DNA complementing both of the mutations was cloned on a single BamHI fragment approximately 13.8 kilobase pairs in length. Analysis of a subcloned fragment showed that the two mutations were in different genes.  相似文献   

8.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 microM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 microg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4- greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics.  相似文献   

9.
Studies on the rate and extent of galacturonic acid and isolated pectin digestion were carried out with nine strains of rumen bacteria (Butyrivibrio fibrisolvens H10b and D16f, Bacteroides ruminicola 23 and D31d, Lachnospira multiparus D15d, Peptostreptococcus sp. D43e, B. succinogenes A3c, Ruminococcus flavefaciens B34b, and R. albus 7). Only three strains, 23, D16f, and D31d, utilized galacturonic acid as a sole energy source, whereas all strains except A3c and H10b degraded (solubilized) and utilized purified pectin. Nutrient composition of the basal medium and separate sterilization of the substrate affected the rate and extent of fermentation for both substrates. Pectin degradation and utilization were measured with two maturity stages each of intact bromegrass and alfalfa. For bromegrass I, all strains tested (B34b, 23, D16f, D31d, D15d, and D43e) degraded a considerable amount of pectin and, with the exception of B34b, utilized most of what was degraded. Similar, but lower, results were obtained with bromegrass II, except for the two strains of B. ruminicola, 23 and D31d, which were unable to degrade and utilize pectin from this forage. All strains were able to degrade and utilize pectin from both maturity stages of alfalfa; however, values were considerably lower for strains 23 and D31d. Synergism studies, in which a limited utilizing strain, B34b, was combined with the limited degrading strain, D31d, resulted in a slight increase in degradation and a very marked increase in utilization of the pectin in all four forages. Similar results were obtained on both alfalfa substrates with a combination of strains B34b and D16f; however, no increases were observed with this combination on bromegrass.  相似文献   

10.
Three hundred bacterial isolates from soil were tested for resistance against phosphinothricin [PPT; dl-homoalanin-4-yl(methyl)phosphinic acid], the active ingredient of the herbicide BASTA. Eight resistant bacterial strains and Escherichia coli were analyzed for PPT-transforming activities. At least three different enzymatic reactions could be detected in cell extracts. In six strains an acetyltransferase was active, synthesizing N-acetyl-PPT in the presence of PPT and acetyl coenzyme A. All strains could degrade PPT to its corresponding 2-oxoacid {2-oxo-4-[(hydroxy)(methyl)phosphinoyl] butyric acid} by transamination. Rhodococcus sp., the only tested strain that was able to utilize PPT as a sole source of nitrogen, formed 2-oxo-4[(hydroxy)(methyl)phosphinoyl]butyric acid by oxidative deamination. This enzymatic activity was inducible by l-glutamic acid or PPT itself but not in the presence of NH(4). d-PPT transformation was not detectable in any of the investigated strains.  相似文献   

11.
1. Washed suspensions of two Achromobacter species (G2 and 2L), capable of growth upon 2- and 3-hydroxypyridine respectively as sources of C and N, rapidly oxidized their growth substrate pyridine-2,5-diol (2,5-dihydroxypyridine) and the putative ring-cleavage product maleamate without a lag. Suspensions derived from fumarate plus (NH(4))(2)SO(4) cultures were unable to do so. 2. Extracts of both bacteria oxidized pyridine-2,5-diol with the stoicheiometry of an oxygenase forming 1mol of NH(3)/mol of substrate. 3. Heat-treated extracts, however, formed maleamate and formate with little free NH(3). 4. The conversion of maleamate into maleate plus NH(3) by extracts of strain 2L, fractionated with (NH(4))(2)SO(4), and the metabolism of maleamate and maleate to fumarate by extracts of both strains demonstrated the existence of the enzymes catalysing each reaction of the maleamate pathway in these bacteria. 5. The pyridine-2,5-diol dioxygenase (mol.wt. approx. 340000) in extracts of these Achromobacter species required Fe(2+) (1.7mum) to restore full activity after dialysis or treatment with chelating agents; the enzyme from strain 2L also had a specific requirement for l-cysteine (6.7mm), which could not be replaced by GSH or dithiothreitol. 6. The oxygenase was strongly inhibited in a competitive manner by the isomeric pyridine-2,3- and -3,4-diols.  相似文献   

12.
Abstract Cell-free extracts of Rhodococcus corallinus NRRL B-15444R dechlorinated deethylsimazine (2-chloro-4-ethylamino-1,3,5-triazine-6-amine) to N -ethylammeline (2-amino-4-ethylamino-1,3,5-triazine-6(5H)-one) anaerobically, and, thus, presumably hydrolytically. Two enzyme fractions ( M r about 450 000 and 180 000) that dechlorinated deethylsimazine were detected after gel permeation chromatography of cell extracts.  相似文献   

13.
The proteolytic activity of Butyrivibrio fibrisolvens, a ubiquitously distributed bacterial species in the gastrointestinal tracts of ruminants and other mammals, was characterized. The relative proteolytic activity (micrograms of azocasein degraded per hour per milligram of protein) varied greatly with the strain: 0 to 1 for strains D1, D16f, E21C, and X6C61; 7 to 15 for strains IL631, NOR37, S2, LM8/1B, and X10C34; and 90 to 590 for strains 12, 49 H17C, CF4c, CF3, CF1B, and R28. The activity levels of the last group of strains were equal to or greater than those found with Bacteroides amylophilus or Bacteroides ruminicola. With the exception of strain R28 activity, 90% or more of the proteolytic activity was associated with the culture fluid and not the cells. Strain 49 produced proteolytic activity constitutively, but the level of activity (units per milligram of protein) was modulated by growth parameters. With various carbohydrates added to the growth medium, the proteolytic activities of strain 49 were positively correlated with the growth rate. However, when the growth rate varied with the use of different nitrogen sources, a similar correlation was not found. The highest activity level was observed with Casamino Acids (1 g/liter), but this level was reduced by ca. 70% with Trypticase (BBL Microbiology Systems, Cockeysville, Md.) or casein (1 g/liter) and by 85% with ammonium chloride (10 mM) as the sole nitrogen source. The addition of ammonium chloride (1 to 10 mM) to media with low levels of Casamino Acids or Trypticase resulted in lower proteolytic activities but not as low as seen when the complex nitrogen sources were increased to high levels (20 g/liter).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The relationship between oxidized nicotinamide adenine dinucleotide (phosphate) [NAD(P)+] transhydrogenase (EC 1.6.1.1) and NAD(P)+ glutamate dehydrogenase in several enteric bacteria which differ slightly in their regulation of nitrogen metabolism was studied. Escherichia coli strain K-12 was grown on glucose and various concentrations of NH4Cl as the sole nitrogen source. In the range of 0.5 to 20 mM NH4Cl, the energy-independent transhydrogenase increased two to threefold. Comparable changes occurred in NAD(P)+-linked glutamate dehydrogenase. NH4Cl concentrations of 20 to 60 mM resulted in relatively constant specific activities for both enzymes. Higher exogenous NH4Cl, however, led to a decline in both activities. Isocitrate dehydrogenase, another potential source of cellular NADPH, was insensitive to NH4Cl limitation. Similar studies in the presence of glutamate and different exogenous NH4Cl concentrations again showed concerted effects on both enzymes. Growth on glutamate as the sole nitrogen source led to severe repression of both transhydrogenase and glutamate dehydrogenase. In Salmonella typhimurium, both enzymes were unaffected by limiting NH4Cl or growth on glutamate as the sole nitrogen source. Both were, however, repressed by growth on aspartate, a potential source of cellular glutamate. Coordinate changes in glutamate dehydrogenase and transhydrogenase were also evident in Klebsiella aerogenes, particularly under conditions in which glutamate dehydrogenase was regulated inversely to glutamate synthetase. Coordinate changes in glutamate dehydrogenase and transhydrogenase in enteric bacteria are discussed in terms of the possible involvement of the latter enzyme as a direct source of NADPH in the ammonia assimilation system.  相似文献   

15.
This communication describes the isolation and characterization of mutants of Rhizobium trifolii which can induce nitrogenase activity in defined liquid medium. Two procedures were used for the isolation of these mutants from R. trifolii strain DT-6: (1) following chemical mutagenesis, slow growing mutants were selected which were unable to utilize NH+4 as sole source of nitrogen; (2) as spontaneous mutants resistant to the glutamate analogue L-methionine-DL-sulfoximine. Mutants (DT-71, DT-125) isolated by these procedures induced nitrogenase activity in the free-living state, whereas the parent strain lacked this property. Induction of nitrogenase activity in these mutants occurred during the late exponential phase of growth when the rate of protein synthesis was decreasing. The addition of NH+4 to a medium containing glutamate as the nitrogen-source resulted in a 50--70% reduction (repression?) of nitrogenase activity; in contrast, the rate of protein synthesis or the rate of respiration was not influenced by exogenous NH+4. Biochemical analysis showed that these mutants (strains DT-71 and DT-125) have defects in both nitrogen and carbon metabolism. The levels of glutamate synthase (both NADP+ -and NAD+ -dependent activities) and glutamate dehydrogenase (NAD+-dependent activity) were markedly lower. In addition, the mutants were found to have no detectable ribitol dehydrogenase or beta-galactosidase activity. These findings are discussed in relation to a mechanism of regulation of symbiotic nitrogen fixation.  相似文献   

16.
Pseudomonas sp. N31 was isolated from soil using 3-nitrophenol and succinate as sole source of nitrogen and carbon respectively. The strain expresses a nitrophenol oxygenase and can use either 2-nitrophenol or 4-chloro-2-nitrophenol as a source of nitrogen, eliminating nitrite, and accumulating catechol and 4-chlorocatechol, respectively. The catechols were not degraded further. Strains which are able to utilize 4-chloro-2-nitrophenol as a sole source of carbon and nitrogen were constructed by transfer of the haloaromatic degrading sequences from either Pseudomonas sp. B13 or Alcaligenes eutrophus JMP134 (pJP4) to strain N31. Transconjugant strains constructed using JMP134 as the donor strain grew on 3-chlorobenzoate but not on 2,4-dichlorophenoxyacetate. This was due to the non-induction of 2,4-dichlorophenoxyacetate monooxygenase and 2,4-dichlorophenol hydroxylase. Transfer of the plasmid from the 2,4-dichlorophenoxyacetate negative transconjugant strains to a cured strain of JMP134 resulted in strains which also had the same phenotype. This indicates that a mutation has occurred in pJP4 to prevent the expression of 2,4-dichlorophenoxyacetate monooxygenase and 2,4-dichlorophenol hydroxylase.  相似文献   

17.
Enrichment cultures were obtained, after prolonged incubation on a shale oil as the sole source of nitrogen, that selectively degraded nitriles. Capillary gas chromatographic analyses showed that the mixed microbial populations in the enrichments degraded the homologous series of aliphatic nitriles but not the aliphatic hydrocarbons, aromatic hydrocarbons, or heterocyclic-nitrogen compounds found in this oil. Time course studies showed that lighter nitriles were removed more rapidly than higher-molecular-weight nitriles. A Pseudomonas fluorescens strain isolated from an enrichment, which was able to completely utilize the individual nitriles undecyl cyanide and undecanenitrile as sole sources of carbon and nitrogen, was unable to attack stearonitrile when provided alone as the growth substrate. A P. aeruginosa strain, also isolated from one of the enrichments, used nitriles but not aliphatic or aromatic hydrocarbons when the oil was used as a sole nitrogen source. However, when the shale oil was used as the sole source of carbon, aliphatic hydrocarbons in addition to nitriles were degraded but aromatic hydrocarbons were still not attacked by this P. aeruginosa strain.  相似文献   

18.
A strain of Klebsiella pneumoniae that used aliphatic nitriles as the sole source of nitrogen was adapted to benzonitrile as the sole source of carbon and nitrogen. Gas chromatographic and mass spectral analyses of culture filtrates indicated that K. pneumoniae metabolized 8.4 mM benzonitrile to 4.0 mM benzoic acid and 2.7 mM ammonia. In addition, butyronitrile was metabolized to butyramide and ammonia. The isolate also degraded mixtures of benzonitrile and aliphatic nitriles. Cell extracts contained nitrile hydratase and amidase activities. The enzyme activities were higher with butyronitrile and butyramide than with benzonitrile and benzamide, and amidase activities were twofold higher than nitrile hydratase activities. K. pneumoniae appears promising for the bioremediation of sites contaminated with aliphatic and aromatic nitriles.  相似文献   

19.
Phthalate is degraded through 4,5-dihydroxyphthalate and protocatechuate in Pseudomonas testosteroni NH1000. The ezyme 4,5-dihydroxyphthalate decarboxylase, catalyzing the conversion of 4,5-dihydroxyphthalate to protocatechuate and carbon dioxide, was purified approximately 130-fold from phthalate-induced cells of a protocatechuate 4,5-dioxygenase-deficient mutant of P. testosteroni. The most purified preparation showed a single protein band on sodium dodecyl sulfate-acrylamide disc gel electrophoresis with a molecular weight of 38,000. The apparent molecular weight of the native enzyme determined by Sephadex G-200 column chromatography was 150,000. Among the substrate analogs tested, only 4-hydroxyphthalate served as a substrate, which was decarboxylated to form m-hydroxybenzoate. The apparent Km values for 4,5-dihydroxyphthalate and 4-hydroxyphthalate were estimated to be 10.5 micrometer and 1.25 mM, respectively, and the Vmax for the former was 10 times larger than that for the latter. Whereas the wild-type strain could utilize 4-hydroxyphthalate as a sole source of carbon, none of the following could grow with the compound: 4,5-dihydroxyphthalate decarboxylase-deficient, m-hydroxybenzoate-nondegradable, and protocatechuate 4,5-dioxygenase-deficient mutants. Since one-step revertants of these mutants could utilize 4-hydroxyphthalate, the compound appears to be metabolized through m-hydroxybenzoate and protocatechuate in P. testosteroni NH1000.  相似文献   

20.
Strain YAYA6 was isolated from a mixed microbial community that was growing on atrazine as a sole carbon source and formed quantitative amounts of chloride and nitrate. This strain was identified as a member of the true pseudomonad group (RNA group I) and was given the designation DMS 93-99. The growth yield when atrazine was the sole carbon and nitrogen source was 80 g (dry weight) of cells per mol of atrazine, and the cell doubling time was around 11 h. Approximately 20% of [U-ring 14C]atrazine was mineralized during primary degradation of atrazine. After atrazine disappeared from the culture supernatant, mineralization continued until the level of mineralization was more than 50%. Under different experimental conditions 10% of the atrazine supplied initially was converted to cyanuric acid and < 1% was converted to other s-triazines after prolonged incubation. Degradation proceeded via dechlorination and N-dealkylation. Atrazine was degraded until the concentration was circa 0.1 milligrams/liter. We obtained evidence showing that strain YAYA6 has specific uptake mechanisms for atrazine but less specific degradation mechanisms for s-triazines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号