首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
通过两年的田间试验,研究了不同生育时期增铵营养(EAN)对小麦生长和氮素利用的影响.结果表明,田间增铵营养促进了小麦植株的生长和氮素吸收.其中基肥、分蘖期、拔节期EAN提高了小麦的干物质积累量、地上部氮积累量、有效穗数、叶面积指数、叶片叶绿素含量以及小麦的籽粒产量;孕穗期EAN效果不明显;全生育期EAN在促进生长方面的效果并无明显优势,但可有效降低土壤N3--N的淋溶损失.与对照相比,EAN提高了氮流效率和吸收效率,但以拔节前处理最为明显.拔节期EAN主要在于改善后期的叶片光合性能,并促进同化物向籽粒的再分配,而基肥和分蘖期EAN主要在于提高有效分蘖数.  相似文献   

2.
休闲期深翻覆盖对旱地小麦水氮利用效率和产量的影响   总被引:1,自引:0,他引:1  
白冬  高志强  孙敏  赵维峰  邓妍  李青 《生态学杂志》2013,32(6):1497-1503
采用大田试验研究了旱地小麦休闲期不同时间深翻、不同材料覆盖对植株氮素吸收和转运分配、水分和氮利用效率的影响.结果表明:前茬小麦收获后45 d深翻覆盖较15d提高了拔节期、孕穗期、成熟期植株含氮率,提高了各生育时期植株氮积累量和各生育阶段氮吸收速率,提高了花前氮素转移量、转移率,提高了液态地膜覆盖和不覆盖条件下花前氮素转运对籽粒氮的贡献率,提高了籽粒氮积累量及其所占的比例,降低了叶片、茎秆、颖壳+穗轴中氮积累量所占的比例,且均以采用渗水地膜覆盖效果较好;前茬小麦收获后45 d深翻覆盖较15 d增加了产量和水分利用效率,提高了氮素吸收效率、氮素生产效率.总之,休闲期等雨后深翻覆盖有利于植株氮素吸收、积累,有利于花前植株中贮存氮素向籽粒的转移,促进籽粒中氮素积累,降低其他器官中的氮素,最终提高产量、水分利用效率、氮素吸收效率及氮素生产效率,且以渗水地膜覆盖效果较好.  相似文献   

3.
施氮量对小麦氮磷钾养分吸收利用和产量的影响   总被引:36,自引:7,他引:29  
高产条件下研究了不同施氮量对小麦植株氮、磷、钾养分吸收利用及籽粒产量的影响.结果表明,适量施氮可促进小麦植株对氮素的吸收与积累,较高的施氮量不利于起身期之后的氮素积累,致使成熟期小麦氮素积累量未能显著提高;与不施氮肥相比,施氮显著提高植株磷素积累量;随施氮量增加,植株磷素积累量增加不显著;施氮量增加促进小麦生育前期对钾素的吸收积累,在生育后期降低植株钾素的流失.随施氮量增加,籽粒氮素含量呈先增后降的趋势,氮素向籽粒的分配比例趋于降低,植株氮素利用效率无显著变化,氮素收获指数下降;不同施氮处理之间籽粒磷素含量和钾素含量无显著差异,施氮量增加,营养器官钾素含量、钾素积累量和钾素向叶片的分配比例均呈增加趋势;同时,磷素和钾素利用效率降低;不同施氮处理间,植株磷素、钾素收获指数无显著差异.籽粒产量随施氮量增加呈先增加后降低的趋势,以施氮195 kg/hm2的处理籽粒产量最高.  相似文献   

4.
通过添加硝化抑制剂(二氰胺,DCD)来控制硝化作用的水培试验方法,研究了氮高效水稻品种南光和氮低效水稻品种ELIO的籽粒产量对增硝营养(NH4+∶NO3-比例为100∶0和75∶25)的响应,同时从产量构成、不同生育时期水稻生长、氮素吸收和同化4个方面研究了造成其产量差异的生理机制。结果表明:增NO3-营养可以显著促进氮高效水稻品种南光的生长,从而使其籽粒产量水平提高21%,而对氮低效水稻品种ELIO的籽粒产量没有显著影响。进一步分析表明:在增NO3-营养条件下,南光的穗粒数增加了25%,结实率增加了16%,而氮低效水稻品种ELIO的结实率和穗粒数在两种营养条件下没有显著变化;增NO3-营养可以促进南光对氮素的吸收,使其在苗期、分蘖盛期、齐穗期和成熟期对氮素的吸收量平均增加了36%,进而促进了其生长,干物质积累量在四个生育时期平均增加了30%;南光叶片硝酸还原酶和根系谷氨酰胺合成酶的活力在增硝营养条件下分别增加了100%和95%,说明增硝营养促进了南光对NH4+和NO3-的同化利用。与氮低效水稻品种(ELIO)相比,氮高效水稻品种(南光)对增硝营养表现出较强的生理响应。  相似文献   

5.
缺水与补水对小麦氮素吸收及土壤残留氮的影响   总被引:18,自引:1,他引:17  
通过温室培养试验,研究了不同生长期缺水和补充灌水对冬小麦氮素吸收利用和土壤残留的影响.结果表明,在不同生长期缺水及分蘖期补充灌水均能显著降低冬小麦的氮素吸收,增加矿质态氮的土壤残留,土壤残留氮含量介于79.8~113.7mg·kg^-1;越冬、拔节、灌浆期补充灌水可显著提高冬小麦对土壤氮素的吸收能力,不同程度地降低氮素残留,土壤残留氮介于47.2~60.3mg·kg^-1.补充灌水引起的小麦吸氮能力提高与其对氮素的有效利用并不一致.越冬期补水,小麦籽粒吸氮量无显著变化;灌浆期补水,籽粒吸氮量相应提高20.9%;拔节期补水反而使籽粒吸氮量降低19.6%.  相似文献   

6.
小麦氮素利用效率的基因型差异   总被引:7,自引:0,他引:7  
Zhang XZ  Yang XB  Li TX  Yu HY 《应用生态学报》2011,22(2):369-375
通过土培盆栽试验,研究了130份小麦材料在相同氮素水平下生物量、氮素积累量、氮素生产效率的基因型差异,旨在筛选具有高效利用氮素能力的小麦基因型,为氮高效小麦育种提供种质资源.结果表明:拔节期、抽穗期和成熟期供试小麦单株生物量变幅分别为1.06~3.08 g、1.88~9.05 g和2.64~13.75 g,单株籽粒产量变幅为1.38~9.90 g.拔节期、抽穗期氮素干物质生产效率变幅分别为25.62~65.41 g.g-1 N(F=5.099**)和35.79~88.70 g·g-1 N(F=5.325**),成熟期氮素籽粒生产效率变幅为19.06~38.54 g.g-1 N(F=4.669**).不同氮素生产效率小麦基因型拔节期氮素干物质生产效率(F=637.941**)、抽穗期氮素干物质生产效率(F=201.173**)及成熟期氮素籽粒生产效率(F=443.450**)存在极显著差异.不同氮素生产效率小麦基因型拔节期、抽穗期及成熟期生物量差异显著,有效分蘖数与穗数差异不显著.氮素生产效率高的基因型具有无效分蘖少、抽穗期前氮素利用能力强、抽穗期-成熟期氮素吸收与再利用能力强等特点.典型氮高效基因型小麦省CX...  相似文献   

7.
在不同土壤肥力条件下,研究了施氮量对小麦氮素吸收、转化及籽粒产量和蛋白质含量的影响。结果表明,增施氮肥可以提高小麦各生育阶段的吸氮强度,尤以生育后期提高的幅度为大认为是增施氮肥提高小麦籽粒产量和蛋白质含量的基础,增施氮肥虽提高了小麦植株的吸氮强度。吸氮量增加,但开花后营养器官氮素向籽粒中的转移率降低,增施氮肥不仅促进了小麦植株对肥料氮的吸收,而且也促进了对土壤氮的吸收,并讨论了在高、低土壤肥力条件下氮肥合理运筹的问题。  相似文献   

8.
采用水培试验研究不同形态氮营养(NH4^+/NO3^-分别为0/100、50/50和100/0)对小麦光合作用及氮代谢关键酶活性的影响.结果表明,增铵营养较单—NO3-营养显著提高叶片叶绿素含量、净光合速率及可溶性糖含量,叶、根中可溶性蛋白质含量和叶片硝酸还原酶活性。而对谷铵酰胺合成酶活性影响较小.与单—NO3-营养相比。增氨营养下叶片较高的可溶性糖含量与净光合速率的提高相关。而维持较高的叶片和根系可溶性糖/可溶性蛋白质比例有利于氮同化和生长.因此,增铵营养下提高了叶片净光合速率、可溶性糖含量和硝酸还原酶活性。维持较高叶片和根系可溶性糖/蛋白质比例。从而促进小麦生长.  相似文献   

9.
为探索小麦高产高效优质生产技术途径,指导小麦晚播生产实践,2012年10月—2014年6月,以弱春性小麦偃展4110和半冬性小麦矮抗58为材料进行连续2年的田间定位试验,设置了常规适播(10月中旬、240万株·hm-2)和极端晚播(11月中旬、600万株·hm-2)两种栽培模式,研究了极端晚播对0~40 cm土层土壤硝态氮含量、小麦氮素吸收利用、产量、籽粒蛋白质含量和氮素吸收效率的影响.结果表明: 与常规适播处理相比,两个生长季极端晚播处理均使拔节和开花期0~40 cm土壤硝态氮含量显著提高,从而促进拔节后小麦植株氮素吸收积累,成熟期穗部氮素的分配比例也得到提高,最终显著提高小麦籽粒蛋白质含量和偃展4110的蛋白质产量、氮素吸收效率,但对籽粒产量的影响因品种而异.其中,极端晚播处理使偃展4110的籽粒产量显著提高,而矮抗58的籽粒产量却显著降低.因此,极端晚播栽培模式可维持小麦拔节后的土壤氮供应,有利于提高小麦氮素吸收效率,从而提高小麦籽粒产量和蛋白质含量,是灌区小麦高产优质的有效途径之一.  相似文献   

10.
利用水培试验,研究了3个小麦基因型对不同形态N素吸收和积累的差异.结果表明,在不同N浓度下,小麦对增铵营养和NH+的吸收速率显著高于NO3-营养,且在较高浓度下,增铵营养处理具有更强的吸收优势.与次敏感型莱州953和钝感型江东门相比,敏感型扬麦158不仅具有较强的NO3-和NH+吸收能力,而且具有最强的增铵营养吸收能力.增铵营养促进了扬麦158和莱州953对NO3-和NH+的吸收,但在一定程度上抑制了江东门对NO3-的吸收.与NO3-营养及NH+营养相比,增铵营养显著提高了扬麦158和莱州953的全株、地上部N积累量和叶片光合速率,而对江东门影响较小因此,增铵营养促进了植株的N吸收,提高了N积累和光合速率,从而促进了小麦生长  相似文献   

11.
氮肥运筹对晚播冬小麦氮素和干物质积累与转运的影响   总被引:12,自引:0,他引:12  
氮素平衡对干物质积累与分配的影响是农业生态系统研究的重要内容,在保障产量前提下减少氮肥施用量可减少环境污染与温室气体排放。以晚播冬小麦为研究对象,设置4个施氮量水平:0 kg/hm2(N0)、168.75 kg/hm2(N1)、225 kg/hm2(N2)、281.25 kg/hm2(N3),每个施氮量水平下设置2个追氮时期处理:拔节期(S1)、拔节期+开花期(S2),研究了氮肥运筹对晚播冬小麦氮素和干物质积累与转运及氮肥利用率的影响。结果表明:拔节期追施氮肥(S1)条件下,在225 kg/hm2(N2)基础上增施25%氮肥(N3)对开花期氮素积累总量和营养器官氮素转运量无显著影响;拔节期+开花期追施氮肥(S2)条件下,随施氮量增加,开花期氮素积累总量和花后营养器官氮素转运量升高;S2较S1显著提高成熟期籽粒及营养器官氮素积累量、花后籽粒氮素积累量及其对籽粒氮素积累的贡献率。同一施氮量条件下,S2较S1提高了成熟期的干物质积累量、开花至成熟阶段干物质积累强度和花后籽粒干物质积累量。同一追氮时期条件下,籽粒产量N2与N3无显著差异,氮肥偏生产力随施氮量增加而降低;同一施氮量条件下,S2较S1提高了晚播冬小麦的籽粒产量和氮肥吸收利用率。拔节期+开花期追施氮肥,总施氮量225kg/hm2为有利于实现晚播冬小麦高产和高效的最优氮肥运筹模式。  相似文献   

12.
运用磷脂脂肪酸(phospholipid fatty acid,PLFA)和Biolog方法,研究了秸秆不还田不施肥(CK)、秸秆还田+尿素1(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=0∶6∶2∶2,T1)、秸秆还田+尿素2(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=3∶3∶2∶2,T2)、秸秆还田+沼液+尿素(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=3(沼液)∶3(2沼液+1尿素)∶2(尿素)∶2(尿素),T3) 4种氮肥运筹方式对水稻各生育期(分蘖期、孕穗期、成熟期)土壤微生物群落结构的影响。结果表明: 1)T3处理显著提高了各生育期土壤中的有效氮含量,其中成熟期有效氮含量显著高于分蘖期和孕穗期;T1~T3处理的有效磷和速效钾含量在各生育期均高于CK,且分蘖期的含量高于孕穗期和成熟期;稻田各生育期与各处理的交互作用对土壤有效氮、有效磷、速效钾含量均有显著影响;2)T3能提高稻田土壤中微生物碳源代谢强度,碳水化合物、氨基酸、聚合物、羧酸是稻田土壤微生物利用的主要碳源,稻田各生育期与各处理的交互作用对微生物利用碳水化合物和羧酸的能力有显著影响;3)T2、T3能显著提高土壤微生物生物量;T2处理真菌/细菌比较高,以真菌为主导,更有利于稻田土壤生态系统的稳定。表明秸秆还田同步施用氮肥(尿素或沼液)能提高土壤微生物活性,改善土壤环境。  相似文献   

13.
不同时期开沟施氮对水稻物质生产及产量的影响   总被引:3,自引:1,他引:2  
通过田间试验 ,研究了水稻不同生育时期开沟深施氮肥对水稻叶片、叶鞘和茎秆干重以及生物产量和籽粒产量的影响 .结果表明 ,孕穗期开沟深施氮肥处理比分蘖期开沟、穗分化始期开沟和不开沟处理的水稻叶片干重保持最大值 (2 .9g/穴 )时间长 ,叶面积指数达到最大值 (LAI =8.9)后保持缓慢下降 ;叶鞘干重 (2 .7g/穴 )变化小 ;处理以后茎秆干重 (4.3g/穴 )稳步增加 .孕穗期开沟施肥处理的水稻生物产量(0 .73g·d-1/穴 )递增速度快 ,籽粒产量 (10 4 34kg·hm-2 )高 .与不开沟施肥相比 ,孕穗期开沟施氮对产量增加作用最大 ,为水稻开沟深施氮肥的最佳时期 ;其次为穗分化始期 ,分蘖期开沟施氮效果较差 ,但仍有一定的增产作用 .  相似文献   

14.
水稻纹枯病菌营养及寄主资源生态位   总被引:4,自引:1,他引:3  
由于IPM概念的局限性,有害生物生态调控(EPM)理论和方法的提出发展了IPM,生态位原则是有害生物生态调控(EPM)的重要原则之一,生态位研究为EPM的具体实施提供了依据。应用可持续农业和EPM理论及生态位理论研究了水稻纹枯病的生态位,分析了水稻纹枯病菌氮肥营养生态位和寄主品种资源生态位,结果表明:以相对侵染效率作为指标,在水稻不同生育期,纹枯病的氮肥营养生态位宽度不同,其中以孕穗期的生态位宽度最小,为0.6979,拔节期、抽穗期、灌浆期和乳熟期的生态位宽度分别是0.9741,0.8884,0.7974和0.9815,表明水稻纹枯病在水稻不同生育阶段利用氮肥的效能不同。寄主品种资源生态位宽度在拔节期、孕穗期、抽穗期、乳熟期分别为0.9348,0.7677,0.8875和0.9962。以病情指数为指标,氮肥营养生态位宽度在拔节期、孕穗期、抽穗期、灌浆期和乳熟期分别为0.9379,0.9696,0.6775,0.6729和0.7691。其氮肥营养生态位宽度在拔节期与孕穗期最大,生态位宽度指数接近于1。寄主品种资源生态位宽度在各生育期均接近1,表明寄主品种资源生态位宽度在各生育期是相似的,即说明水长期稻纹枯病菌利用品种资源各状态的选择和利用效能是相似的。  相似文献   

15.
灌水时间对冬小麦生长发育及水肥利用效率的影响   总被引:3,自引:0,他引:3  
研究秸秆还田后不同越冬前灌水时间(11月10日、11月25日、12月10日)和春季灌水时间(3月5日,返青期;4月5日,拔节期)对冬小麦生长发育、干物质运转及水肥利用效率的影响.结果表明: 越冬前灌水时间主要影响冬前和拔节期群体大小,而春灌时间对冬小麦成穗数、产量、干物质运转和水肥利用效率的影响较大,而且越冬前灌水时间对冬小麦产量构成的影响与春灌时间密切相关.在春季返青期灌水条件下,越冬前灌水时间越早,成穗数和产量越高;在拔节期灌水条件下,随越冬前灌水时间的推迟,成穗数和产量呈先升高再降低的趋势,而穗粒数逐渐增加,千粒重受影响较小.水分利用效率、养分吸收量和肥料利用率均随越冬前灌水时间的推迟而降低,随春季灌水时间的推迟而升高.因此,在秸秆还田足墒播种条件下,将越冬前灌水时间适当提前,可以塌实土壤,促进冬小麦冬前分蘖,增加群体大小;配合拔节期增量灌水,可以控制早春无效分蘖,提高成穗率,稳定粒重,提高水肥利用效率,实现节水高产高效栽培.  相似文献   

16.
在等灌水量和施氮量下,探索小麦-玉米一年两熟轮作区玉米秸秆还田后冬小麦生育期微喷灌水氮一体化模式对冬小麦生长发育和水肥利用效率的影响。2016—2018年通过2年田间大区试验,在生育期设6种微喷灌水氮一体化模式,其中,灌水设W1(越冬水+拔节水+灌浆水,各灌600 m3·hm-2)、W2(越冬水+返青水+拔节水+灌浆水,各灌450 m3·hm-2)和W3(越冬水、拔节水各灌600 m3·hm-2,返青水、灌浆水各灌300 m3·hm-2)3种模式;施氮设N1(基施氮60%+随拔节水追氮40%)和N2(基施氮60%+随拔节水追氮30%+随灌浆水追氮10%)2种模式,以W1下不施肥为对照(CK),共7个处理,调查群体动态、灌浆期干物质积累转移和成熟期养分积累规律。结果表明: 1)越冬水灌水量由450 m3·hm-2增至600 m3·hm-2,有利于越冬期植株总茎数和成穗数的增加而增产,灌返青水拔节期总茎数增加,对成穗数影响较小;拔节期施氮越多,单株茎数增加越多,但成穗数降低。2)生育期灌4水(W2和W3),配合拔节期和灌浆期分次水氮一体化(N2),有利于灌浆期总干物质积累、穗粒数和千粒重增加而增产。3)灌4水处理比灌3水处理生育期耗水量和氮、磷、钾素吸收量增加,水肥利用效率提高。灌4水处理(W2和W3)中N2的生育期耗水量低于N1,氮、磷、钾素吸收量高于N1,灌水和氮磷钾利用率显著提高,以W3N2效果最好。因此,W3N2处理,即玉米秸秆还田后播种冬小麦,微喷灌生育期灌4水,越冬水和拔节水灌水量增加到600 m3·hm-2,配合拔节水和灌浆水追施氮肥,使冬小麦成穗数和千粒重增加而增产,且水肥利用效率最高,是山西南部冬小麦微喷灌水肥一体化高产高效最佳水氮管理模式。  相似文献   

17.
施肥和覆膜垄沟种植对旱地小麦产量及水氮利用的影响   总被引:17,自引:0,他引:17  
通过大田试验研究了施肥和覆膜垄沟种植对旱地冬小麦群体动态、产量构成及水氮利用的影响。结果表明,覆膜垄沟种植和追肥处理可显著提高旱地冬小麦穗数,追肥处理可减少后期无效分蘖;覆膜垄沟种植和追肥处理产量分别比农户模式提高了11.73%和13.91%,穗数和穗粒数是其产量提高的关键因素;覆膜垄沟种植方式可减少土壤水分损耗,水分利用率为11.60 kg · hm-2 · mm-1,显著高于其他处理;追肥处理能有效促进小麦生育中后期对氮素的吸收利用,在基施氮量165 kg/hm2上再追肥30 kg/hm2,地上部分吸氮总量增加15.45 kg/hm2,追肥氮的利用率显著高于底肥氮利用率,为51.5%。  相似文献   

18.
为探明玉米秸秆还田下小麦的合理灌溉与施肥方法,于田间研究了漫灌(FI)、微喷灌(SI)、滴灌(DI)和灌水施氮模式(N1, 基施纯N 157.5 kg·hm-2+拔节期施纯N 67.5 kg·hm-2; N2, 基施纯N 157.5 kg·hm-2+拔节期施纯N 45.0 kg·hm-2+灌浆期施N 22.5 kg·hm-2)对土壤水分、硝态氮(NO3--N)含量和小麦生长发育的影响.结果表明: 灌溉方法和灌水施氮模式共同影响土壤含水量和贮水量的变化.其中,灌溉方法对越冬期和返青期0~60 cm、孕穗期和灌浆期0~160 cm、成熟期100~160 cm土层含水量影响相对较小,对越冬期和返青期80~160 cm、成熟期0~80 cm土层含水量影响大;FI对含水量和贮水量影响最大,DI次之,SI最小;SI和DI的灌水施氮模式中灌水量多,则土层含水量高、贮水量多,变化大.NO3--N含量受灌溉方法和施氮的影响,施氮对0~20 cm土层影响大,SI生育期NO3--N含量变化大,DI越冬期至孕穗期NO3--N含量变化小,此后变化大,FI与DI相反;生育前中期灌水量对NO3--N含量影响大,后期施氮对NO3--N含量影响大;SI和DI的2种灌水施氮模式中冬前灌水量多的NO3--N含量变化大.灌溉方法中SI越冬期总茎数和单株分蘖高,成穗率高,成穗数多,产量、水分利用效率(WUE)和氮素利用效率最高,滴灌次之,漫灌最低;SI和DI中N1生育期总茎数、成穗数多,但穗粒数和千粒重低,产量、WUE和氮素利用效率低于N2.因此,玉米秸秆还田后播种小麦,微喷灌代替漫灌生育期灌4水,施足基肥,拔节期和灌浆期分次追氮,是山西南部小麦-玉米一年两熟区小麦节水高产高效栽培模式.  相似文献   

19.
氮高效利用基因型大麦的物质生产与氮素积累特性   总被引:1,自引:1,他引:0  
黄亿  李廷轩  张锡洲  戢林 《生态学杂志》2014,25(7):1971-1978
通过土培盆栽试验,研究了22份大麦材料在低氮(125 mg·kg-1)和正常氮(250 mg·kg-1)处理下氮素吸收利用效率的基因型差异,探讨氮高效大麦干物质生产与氮素积累特性.结果表明: 大麦氮素吸收利用效率基因型差异显著.低氮处理下籽粒产量、氮素籽粒生产效率及氮素收获指数的最高值分别是最低值的2.87、2.92、2.47倍;氮高效基因型大麦籽粒产量、氮素籽粒生产效率和氮素收获指数均显著大于低效基因型,低氮处理下高效基因型3个参数较低效基因型分别高82.1%、61.5%和50.5%.氮高效基因型大麦各生育期干物质和氮素积累优势明显,干物质积累高峰出现在拔节-抽穗阶段,氮素积累高峰出现在拔节前;低氮处理下高效基因型典型材料DH61、DH121+的干物质量较低效基因型典型材料DH80分别高34.4%、38.3%,氮素积累量较DH80分别高54.8%、58.0%.供试大麦干物质和氮素的阶段性积累量对籽粒产量的影响为拔节前最大,且低氮处理下贡献率最高,分别为47.9%和54.7%;而干物质和氮素的阶段性积累量对氮素籽粒生产效率的影响在抽穗 成熟阶段最大,其次是播种-拔节阶段,低氮处理下这两个阶段的贡献率分别为29.5%、48.7%和29.0%、15.8%.氮高效基因型大麦在各生育期的物质生产和氮素积累能力强,低氮处理下优势较为明显,能够提高拔节前干物质生产和氮素积累能力,并协同提高大麦产量和氮素利用效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号