首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 225 毫秒
1.
采用室内培养法,比较分析了亚热带地区杉木(Cunninghamia lanceolata)和米槠(Castanopsis carlesii)鲜叶及凋落叶浸提得到的可溶性有机物(dissolved organic matter,DOM)组成和化学性质差异对土壤CO2排放的影响。结果表明:添加不同来源的DOM后,土壤CO2瞬时排放速率在培养第1天内均显著高于对照(添加去离子水)(p0.05),分别比对照增加了91.5%(添加杉木鲜叶DOM)、12.8%(添加米槠鲜叶DOM)、61.0%(添加杉木凋落叶DOM)和113.3%(添加米槠凋落叶DOM),但培养5天后,分别下降到对照的24.1%、8.3%、14.6%和13.2%,随后逐渐趋于平稳。单次添加外源DOM到土壤中,引起土壤CO2排放速率增加的强度较大,但持续时间短暂。培养31天时,添加不同来源的DOM均对土壤CO2累积排放量具有显著影响(p0.05),而在培养59天时,添加杉木鲜叶和凋落叶DOM的土壤CO2累积排放量均显著高于添加米槠鲜叶和凋落叶DOM的土壤CO2累积排放量,但添加相同树种鲜叶与凋落叶DOM的土壤CO2累积排放量之间差异不显著。培养结束后,添加杉木鲜叶DOM和杉木凋落叶DOM后增加的土壤碳排放量,分别是外源添加可溶性有机碳量的1.76倍和2.56倍,而添加米槠鲜叶DOM和米槠凋落叶DOM后增加的土壤碳排放量只占外源添加可溶性有机碳量的22.5%和50.0%,表明单次添加不同来源的DOM对土壤总有机碳库的影响是不一致的。  相似文献   

2.
张政  蔡小真  唐偲頔  郭剑芬 《生态学报》2017,37(22):7660-7667
可溶性有机质(dissolved organic matter,DOM)是生态系统主要的可移动碳库及重要的养分库,它对森林土壤碳吸存的影响已引起高度关注,但DOM对森林土壤有机碳矿化的影响及机制仍不清楚。通过室内为期36 h的短期培养实验,利用~(13)C稳定同位素示踪技术,探究杉木(Cunninghamia lanceolata)凋落叶DOM、米槠(Castanopsis carlesii)凋落叶DOM、杉木死根DOM、米槠死根DOM输入对11年生杉木人工林表层(0—10 cm)土壤有机碳矿化的激发效应,以期揭示DOM在森林碳循环中的作用,对于完善森林碳循环模型有重要意义。研究结果表明:通过~(13)C标记区分不同来源CO_2后发现添加米槠凋落叶DOM和杉木凋落叶DOM处理中来自DOM的CO_2排放速率前期迅速升高,至12 h达到最大值,分别为第2小时的8.0和3.4倍,之后下降,第12小时分别为第36小时的4.6和7.0倍;来自土壤有机碳的CO_2排放速率同样在第12小时达到最大值,分别为同时间点对照的10.1倍和6.3倍。对不同来源CO_2累积排放量进行区分发现,土壤添加凋落叶DOM后来自DOM的CO_2累积排放量显著大于添加死根DOM的(P0.01),其中来自米槠凋落叶DOM的CO_2累积排放量显著大于来自杉木凋落叶DOM的(P0.05),这与添加不同来源DOM中DOC含量呈显著正相关(P0.001)。不同DOM添加对土壤有机碳矿化的激发效应强度不同,培养36h期间添加凋落叶DOM后土壤有机碳激发效应强度始终高于添加死根DOM的。添加米槠凋落叶DOM、杉木凋落叶DOM、米槠死根DOM、杉木死根DOM所引起的激发效应都在第5小时达到峰值,第36小时时添加杉木死根DOM出现负激发效应。可见,添加不同来源DOM对土壤原有有机碳矿化产生了不同的激发效应,这除了与不同来源DOM性质有关外,还可能与DOM添加后土壤微生物群落组成变化有关。有关DOM添加对土壤有机碳矿化影响的微生物学机制有待进一步研究。  相似文献   

3.
亚热带森林转换对土壤微生物呼吸及其熵值的影响   总被引:1,自引:0,他引:1  
土壤微生物呼吸及其熵值是表征土壤质量变化的敏感性指标,不仅能衡量土壤微生物碳利用效率,还能揭示土壤有机碳的变化。通过比较亚热带米槠天然林转换为马尾松人工林和杉木人工林后土壤微生物呼吸速率、土壤微生物生物量碳以及微生物熵、代谢熵的差异,研究亚热带森林转换对土壤微生物碳利用效率的影响。研究结果显示:(1)与天然林相比,马尾松人工林0—10 cm土壤微生物呼吸速率上升32%(P0.05),马尾松人工林和杉木人工林10—20 cm土壤微生物呼吸速率分别下降26%和24%(P0.05);但在20—40 cm土层和40—60 cm土层,天然林土壤微生物呼吸速率比马尾松人工林分别高50%和43%;(2)马尾松人工林和杉木人工林0—10 cm土层土壤微生物生物量碳(MBC)比天然林分别下降19%和40%(P0.05),但马尾松人工林10—20 cm土壤MBC上升29%(P0.05);(3)人工林表层土壤微生物熵与天然林没有显著差异,但与天然林相比,杉木人工林和马尾松人工林20—40 cm土层土壤微生物熵分别下降51%和71%(P0.05),40—60 cm分别下降52%、66%(P0.05)。土壤微生物代谢熵的变化主要发生在0—10 cm土层,马尾松人工林和杉木人工林分别比天然林增加38%和29%(P0.05),在深层土壤,3种林分微生物代谢熵没有显著差异。亚热带森林转换导致表层土壤微生物碳利用效率下降,深层土壤易分解碳在总有机碳库中占比下降,有机碳可利用程度降低。  相似文献   

4.
杉木和米槠凋落叶DOM对土壤碳矿化的影响   总被引:3,自引:0,他引:3  
DOM(Dissolved organic matter)是土壤微生物呼吸的重要底物,凋落物淋溶的DOM对土壤碳矿化具有重要影响。选择中亚热带地区具有代表性的杉木(Cunninghamia lanceolata)和米槠(Castanopsis carlesii)凋落叶作为研究对象,通过两个月的短期室内培养,把不同凋落叶浸提出的DOM添加到培养瓶中,定期测定土壤碳矿化速率,计算土壤碳累积矿化量,探讨两种等浓度等量DOM添加对土壤碳矿化的影响,并分析DOM化学性质在土壤碳矿化过程中的重要性。结果表明:米槠凋落叶浸提得到的DOC(Dissolved organic carbon)和DON(Dissolved organic nitrogen)浓度均显著高于杉木凋落叶的(P0.05),而杉木凋落叶浸提得到的DOM的UV吸收值(SUVA_(254))和HIX(Humification index)均显著低于米槠凋落叶的(P0.01)。添加等浓度等量杉木和米槠凋落叶DOM到土壤中均显著增加了土壤碳矿化速率,在第1天内分别比对照高198%和168%,3d后下降到61.8%和44.1%,14d后基本处于平稳状态,表明外源有机物添加对土壤碳矿化的前期影响较大。培养过程中,添加杉木和米槠凋落叶DOM的土壤碳矿化累积量均能采用双因素指数模型进行拟合(r~2=0.99),但添加两者凋落叶DOM后土壤碳矿化累积量没有显著差异。  相似文献   

5.
杉木凋落物对土壤有机碳分解及微生物生物量碳的影响   总被引:2,自引:2,他引:0  
利用13C稳定同位素示踪技术,研究了杉木凋落物对杉木人工林表层(0~5 cm)和深层(40~45 cm)土壤有机碳分解、微生物生物量碳和可溶性碳动态的影响.结果表明: 杉木人工林中深层土壤有机碳分解速率显著低于表层土壤,但其激发效应却显著高于表层土壤.杉木凋落物添加使土壤总微生物生物量碳和源于原有土壤的微生物生物量碳均显著增加,但对土壤可溶性碳没有显著影响.深层土壤被翻到林地表层,可能加速杉木人工林土壤中碳的损失.  相似文献   

6.
探究不同植物来源可溶性有机质(DOM)进入土壤后对酶活性的影响, 可以为降水淋溶下亚热带地区不同森林生态系统土壤碳循环提供科学依据。该研究提取杉木(Cunninghamia lanceolata)、木荷(Schima superba)和楠木(Phoebe zherman) 3种植物鲜叶中的DOM分别输入杉木人工林土壤中, 以等量的去离子水添加为对照, 进行25天的室内培养。培养结束后测定土壤理化性质、微生物生物量和酶活性等指标。结果表明: 与对照处理(CT)相比, 添加3种叶片DOM后, 土壤总有机碳(SOC)、总氮(TN)含量和碳氮比均无显著变化。杉木叶片DOM添加处理(CL)的TN含量显著低于木荷叶片DOM添加处理(SL)和楠木叶片DOM添加处理(PL), 碳氮比显著高于SL和PL。3种叶片DOM输入整体上提高了土壤溶解有机碳(DOC)和溶解有机氮(DON)的含量。叶片DOM输入后土壤微生物生物量碳(MBC)含量无显著变化, 然而CL和SL的土壤微生物生物量氮(MBN)含量分别比CT降低了50.9%和51.1%, PL的MBN含量比CT提高了54.0%。与CT相比, 不同植物来源DOM输入后, β-葡萄糖苷酶(βG)、纤维素水解酶(CBH)和过氧化物酶(PEO) 3种酶活性均显著上升, 而多酚氧化酶(PPO)活性则显著下降; 此外, βG和CBH活性均表现出CL > SL > PL的特征。相关性分析的结果表明, 添加叶片DOM 3种处理的SOC、TN、MBN含量和βG、CBH活性都与所输入DOM的DOC含量和腐殖化指数(HIX)显著相关, 此外, 土壤MBN含量和PPO活性与输入叶片DOM的pH呈正相关关系。冗余分析(RDA)结果表明, 叶片DOM输入后引起土壤酶活性变化的关键因子是DON和DOC含量。总体来说, 不同植物来源DOM性质的差异会影响土壤碳循环水解酶的活性, 而叶片DOM输入后增加了土壤碳和氮的有效性, 引起4种碳循环酶的不同响应。  相似文献   

7.
《植物生态学报》2021,44(12):1273
探究不同植物来源可溶性有机质(DOM)进入土壤后对酶活性的影响, 可以为降水淋溶下亚热带地区不同森林生态系统土壤碳循环提供科学依据。该研究提取杉木(Cunninghamia lanceolata)、木荷(Schima superba)和楠木(Phoebe zherman) 3种植物鲜叶中的DOM分别输入杉木人工林土壤中, 以等量的去离子水添加为对照, 进行25天的室内培养。培养结束后测定土壤理化性质、微生物生物量和酶活性等指标。结果表明: 与对照处理(CT)相比, 添加3种叶片DOM后, 土壤总有机碳(SOC)、总氮(TN)含量和碳氮比均无显著变化。杉木叶片DOM添加处理(CL)的TN含量显著低于木荷叶片DOM添加处理(SL)和楠木叶片DOM添加处理(PL), 碳氮比显著高于SL和PL。3种叶片DOM输入整体上提高了土壤溶解有机碳(DOC)和溶解有机氮(DON)的含量。叶片DOM输入后土壤微生物生物量碳(MBC)含量无显著变化, 然而CL和SL的土壤微生物生物量氮(MBN)含量分别比CT降低了50.9%和51.1%, PL的MBN含量比CT提高了54.0%。与CT相比, 不同植物来源DOM输入后, β-葡萄糖苷酶(βG)、纤维素水解酶(CBH)和过氧化物酶(PEO) 3种酶活性均显著上升, 而多酚氧化酶(PPO)活性则显著下降; 此外, βG和CBH活性均表现出CL > SL > PL的特征。相关性分析的结果表明, 添加叶片DOM 3种处理的SOC、TN、MBN含量和βG、CBH活性都与所输入DOM的DOC含量和腐殖化指数(HIX)显著相关, 此外, 土壤MBN含量和PPO活性与输入叶片DOM的pH呈正相关关系。冗余分析(RDA)结果表明, 叶片DOM输入后引起土壤酶活性变化的关键因子是DON和DOC含量。总体来说, 不同植物来源DOM性质的差异会影响土壤碳循环水解酶的活性, 而叶片DOM输入后增加了土壤碳和氮的有效性, 引起4种碳循环酶的不同响应。  相似文献   

8.
长期施肥对双季稻田土壤微生物学特性的影响   总被引:12,自引:0,他引:12  
为探明不同施肥处理对早稻和晚稻各个生育时期稻田土壤微生物生物量碳、氮和微生物熵的影响,以湖南宁乡长期定位试验为平台,应用氯仿熏蒸-K_2SO_4提取法和化学分析法系统分析了定位长达29年5种施肥处理之间(化肥、秸秆还田+化肥、30%有机肥+70%化肥、60%有机肥+40%化肥和无肥)双季稻田土壤微生物生物量碳、氮和微生物熵的差异。结果表明,早稻和晚稻各主要生育时期,长期施肥均能提高土壤微生物生物量碳、氮含量和微生物熵,各施肥处理土壤微生物生物量碳、氮含量和微生物熵均随水稻生育期推进呈先增加后降低的变化趋势,均于齐穗期达到最大值,成熟期达到最低值;其中,以60%有机肥和30%有机肥处理双季稻田土壤微生物生物量碳、氮含量和微生物熵均为最高,均显著高于其他处理,其大小顺序表现为60%有机肥30%有机肥秸秆还田化肥无肥。长期有机无机配施可以提高土壤微生物生物量碳、氮和微生物熵,有机肥与化肥配施对提高土壤肥力效果最好。土壤微生物生物量碳、氮及微生物熵可以反映土壤质量的变化,可作为评价土壤肥力的生物学指标。  相似文献   

9.
为了研究喀斯特地区典型土壤有机碳积累与转化过程,采取野外取样分析与室内培养相结合的方法,以红壤为对照,采集2种喀斯特典型土壤(即棕色石灰土和黑色石灰土),设置不添加外源物质(CK)、添加14C标记的稻草(T1)、添加碳酸钙粉末(T2)和同时添加14C标记的稻草与碳酸钙粉末(T3)4个处理,进行室内培养试验,以土壤微生物指标(微生物生物量碳、基础呼吸、微生物碳熵和代谢熵)指示土壤有机碳积累与转化过程。结果表明,土壤有机碳矿化过程中,土壤呼吸的累积量依次为黑色石灰土>棕色石灰土>红壤(P<0.05)。微生物碳熵随土壤有机碳矿化变化依次为黑色石灰土>棕色石灰土>红壤(P<0.05)。同时添加外源稻草和钙对提高土壤微生物碳稳定性的效果最强。桂西北喀斯特地区土壤微生物指标的变化因土壤类型不同而存在差异。利用微生物指标来衡量土壤有机碳稳定性较为可靠。  相似文献   

10.
为探明不同有机肥氮素占总氮投入的百分比对双季稻区早、晚稻各生育时期稻田根际土壤微生物的影响,本研究以大田定位试验为平台,应用氯仿熏蒸-K2SO4提取法和化学分析法系统分析了施用化肥N(M1)、30%有机肥N(M2)、50%有机肥N(M3)、100%有机肥N(M4)和无N对照(M0)5个不同施肥处理双季稻田根际土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物熵的差异.结果表明: 在早稻和晚稻各主要生育时期,施肥措施均能提高稻田根际土壤MBC、MBN和微生物熵,各施肥处理根际土壤MBC、MBN和微生物熵均随水稻生育期推进呈先增加后降低的变化趋势,均于齐穗期达到最大值,成熟期为最低值;其中,各处理双季稻田根际土壤MBC、MBN、MBC/MBN值和微生物熵一般均表现为M4>M3>M2>M1>M0,M2、M3和M4处理间均无显著差异,但均显著高于M0处理.可见,单独施用化肥措施对提高根际土壤微生物生物量碳、氮和微生物熵效果有限,施用有机肥或有机无机肥配施提高根际土壤微生物生物量碳、氮和微生物熵的效果较好.  相似文献   

11.
森林土壤融化期异养呼吸和微生物碳变化特征   总被引:1,自引:0,他引:1  
采用室内土柱培养的方法,研究在不同湿度(55%和80%WFPS,土壤充水孔隙度)和不同氮素供给(NH_4Cl和KNO_3,4.5 g N/m~2)条件下,外源碳添加(葡萄糖,6.4 g C/m~2)对温带成熟阔叶红松混交林和次生白桦林土壤融化过程微生物呼吸和微生物碳的激发效应。结果表明:在整个融化培养期间,次生白桦林土壤对照CO_2累积排放量显著高于阔叶红松混交林土壤。随着土壤湿度的增加,次生白桦林土壤对照CO_2累积排放量和微生物代谢熵(q_(CO_2))显著降低,而阔叶红松混交林土壤两者显著地增加(P0.05)。两种林分土壤由葡萄糖(Glu)引起的CO_2累积排放量(9.61—13.49 g C/m~2)显著大于实验施加的葡萄糖含碳量(6.4g C/m~2),同时由Glu引起的土壤微生物碳增量为3.65—27.18 g C/m~2,而施加Glu对土壤DOC含量影响较小。因此,这种由施加Glu引起的额外碳释放可能来源于土壤固有有机碳分解。融化培养结束时,阔叶红松混交林土壤未施氮处理由Glu引起的CO_2累积排放量在两种湿度条件下均显著大于次生白桦林土壤(P0.001);随着湿度的增加,两种林分土壤Glu引起的CO_2累积排放量显著增大(P0.001)。单施KNO_3显著地增加两种湿度的次生白桦林土壤Glu引起的CO_2累积排放量(P0.01)。单施KNO_3显著地增加了两种湿度次生白桦林土壤Glu引起的微生物碳(P0.001),单施NH_4Cl显著地增加低湿度阔叶红松混交林土壤Glu引起的微生物碳(P0.001)。结合前期报道的未冻结实验结果,发现冻结过程显著地影响外源Glu对温带森林土壤微生物呼吸和微生物碳的刺激效应(P0.05),并且无论冻结与否,温带森林土壤微生物呼吸和微生物碳对外源Glu的响应均与植被类型、土壤湿度、外源氮供给及其形态存在显著的相关性。  相似文献   

12.
A novel procedure was developed for direct quantitative isolation of microbial DNA from soil. This technique was used to evaluate microbial DNA pools in soils of contrasting types (chernozems and brown forest soils) under different anthropogenic loads. A strong correlation was found between microbial biomass and DNA contents in soils of different types (R 2= 0.799). The ratio of soil CO2 emission rate to the amount of extractable DNA in the soil was shown to reflect the physiological state of the soil microbial community; this ratio can be used as an ecophysiological parameter similarly to the metabolic quotient qCO2.  相似文献   

13.
Although a significant amount of the organic C stored in soil resides in subsurface horizons, the dynamics of subsurface C stores are not well understood. The objective of this study was to determine if changes in soil moisture, temperature, and nutrient levels have similar effects on the mineralization of surface (0–25 cm) and subsurface (below 25 cm) C stores. Samples were collected from a 2 m deep unsaturated mollisol profile located near Santa Barbara, CA, USA. In a series of experiments, we measured the influence of nutrient additions (N and P), soil temperature (10–35°C), and soil water potential (?0.5 to ?10 MPa) on the microbial mineralization of native soil organic C. Surface and subsurface soils were slightly different with respect to the effects of water potential on microbial CO2 production; C mineralization rates in surface soils were more affected by conditions of moderate drought than rates in subsurface soils. With respect to the effects of soil temperature and nutrient levels on C mineralization rates, subsurface horizons were significantly more sensitive to increases in temperature or nutrient availability than surface horizons. The mean Q10 value for C mineralization rates was 3.0 in surface horizons and 3.9 in subsurface horizons. The addition of either N or P had negligible effects on microbial CO2 production in surface soil layers; in the subsurface horizons, the addition of either N or P increased CO2 production by up to 450% relative to the control. The results of these experiments suggest that alterations of the soil environment may have different effects on CO2 production through the profile and that the mineralization of subsurface C stores may be particularly susceptible to increases in temperature or nutrient inputs to soil.  相似文献   

14.
A 120-day aerobic incubation experiment was conducted to study the effects of pig slurry application on soil microbial activity. Pig slurry was added to soil at rates of 0 (control treatment), 150 and 300 m3 ha−1. Soil samples were taken after 0, 7, 14, 30, 45, 60, and 120 days of incubation and analyzed for total organic C and microbial biomass C contents, and basal respiration. Most of the organic C applied to soil with pig slurry was readily decomposed within 30 days. During the first phase (0 to 14–30 days), the addition of pig slurry to the soil, especially at the larger rate, increased microbial biomass C content, microbial biomass C/total organic C ratio, basal respiration, and metabolic quotient. The microbial growth and the increase of their activity that these results reflected were not persistent, since the initially measured values in pig slurry-amended soils decreased and reached those of the control soil in a relatively short time.  相似文献   

15.
土壤溶解性有机物对CO_2和N_2O排放的影响   总被引:3,自引:0,他引:3  
李彬彬  马军花  武兰芳 《生态学报》2014,34(16):4690-4697
农田土壤是温室气体的重要排放源,溶解性有机物作为土壤微生物容易利用的基质,其含量变化与温室气体的产生和排放密切相关。基于室内培养试验,对溶解性有机物影响土壤CO2、N2O的排放过程进行了分析。设置空白(CK)、单施秸秆(S)、单施氮肥(N)、秸秆和氮肥(S+N)4个不同的处理,对添加不同物质条件下土壤溶解性有机碳(DOC)、溶解性有机氮(DON)和CO2、N2O的排放动态进行了研究,对DOC和DON影响CO2、N2O的排放过程进行了探讨。结果表明:不同处理的温室气体排放通量和土壤DOC、DON含量差异显著;各处理的CO2排放通量和DOC动态随培养时间的延长呈现逐渐减小的趋势,S和S+N处理的N2O排放和DON动态呈现先增大后减小的趋势;S+N处理的CO2排放量最高,DON含量也显著高于其他处理,单施秸秆(S)处理的N2O排放量和DOC含量显著高于其它处理,单施氮肥(N)对土壤CO2的排放量和DOC含量的影响较小;土壤CO2和N2O的排放通量与土壤DOC和DON含量呈显著的相关性,相关系数(R2)达0.6以上,说明溶解性有机物的含量和动态对CO2、N2O的排放过程产生显著影响。  相似文献   

16.
Y. L. Hu  S. L. Wang  D. H. Zeng 《Plant and Soil》2006,282(1-2):379-386
The quality of leaf litter can control decomposition processes and affect the nutrient availability for plant uptake. In this study, we investigated the effect of single leaf litter (Chinese fir – Cunninghamia lamcealata (Lamb.) Hook) and mixed leaf litters (C. lamcealata, Liquidamba formosana Hance and Alnus cremastogyne Burk) on soil chemical properties, soil microbial properties and soil enzyme activities during 2 years decomposition. The results showed that soil microbial biomass C, the ratio of soil microbial biomass C to total soil organic C (soil microbial quotient, Cmic/Corg) and soil enzymes (urease, invertase, dehydrogenase) activities increased significantly in mixed leaf litters treatments whereas soil chemical properties remained unchanged. However, soil microbial metabolic quotient (qCO2) values and soil polyphenol oxidase activity were higher in the single Chinese fir leaf litter treatment that had a higher C:N (carbon:nitrogen) ratio (79.53) compared with the mixed leaf litter (C:N ratios of 76.32, 56.90, 61.20, respectively). Our results demonstrated that the mixed leaf litter can improve forest soil quality, and that soil microbial properties and soil enzyme activities are more sensitive in response to litter quality change than soil chemical properties.  相似文献   

17.
Microbial responses to three years of CO2 enrichment (600 μL L–1) in the field were investigated in calcareous grassland. Microbial biomass carbon (C) and soil organic C and nitrogen (N) were not significantly influenced by elevated CO2. Microbial C:N ratios significantly decreased under elevated CO2 (– 15%, P = 0.01) and microbial N increased by + 18% (P = 0.04). Soil basal respiration was significantly increased on one out of 7 sampling dates (+ 14%, P = 0.03; December of the third year of treatment), whereas the metabolic quotient for CO2 (qCO2 = basal respiration/microbial C) did not exhibit any significant differences between CO2 treatments. Also no responses of microbial activity and biomass were found in a complementary greenhouse study where intact grassland turfs taken from the field site were factorially treated with elevated CO2 and phosphorus (P) fertilizer (1 g P m–2 y–1). Previously reported C balance calculations showed that in the ecosystem investigated growing season soil C inputs were strongly enhanced under elevated CO2. It is hypothesized that the absence of microbial responses to these enhanced soil C fluxes originated from mineral nutrient limitations of microbial processes. Laboratory incubations showed that short-term microbial growth (one week) was strongly limited by N availability, whereas P was not limiting in this soil. The absence of large effects of elevated CO2 on microbial activity or biomass in such nutrient-poor natural ecosystems is in marked contrast to previously published large and short-term microbial responses to CO2 enrichment which were found in fertilized or disturbed systems. It is speculated that the absence of such responses in undisturbed natural ecosystems in which mineral nutrient cycles have equilibrated over longer periods of time is caused by mineral nutrient limitations which are ineffective in disturbed or fertilized systems and that therefore microbial responses to elevated CO2 must be studied in natural, undisturbed systems.  相似文献   

18.
开展不同恢复演替阶段天然次生林土壤-微生物生物量及其化学计量特征关系的研究,可为有效和持续管理川西亚高山次生林提供科学依据。以川西亚高山米亚罗林区20世纪60、70、80年代3种采伐迹地经自然恢复演替形成的次生林(SF60、SF70和SF80)和岷江冷杉(Abies faxoniana)原始林(PF)为研究对象,探讨了表层(0-20 cm)土壤有机碳(Csoil)、全氮(Nsoil)、全磷(Psoil)含量及微生物生物量碳(Cmic)、氮(Nmic)、磷(Pmic)含量随自然恢复演替的变化特征,分析了它们的化学计量比与微生物熵(qMB)之间的相互关系。结果表明:(1)随着恢复演替年限的增加,Csoil和Nmic含量显著降低,Nsoil和Psoil及Cmic和Pmic含量呈现先升后降的显著变化趋势,且3种次生林的表层土壤碳、氮、磷及其微生物生物量的含量均低于PF。(2)次生林恢复年限对土壤微生物熵C(qMBC)和P(qMBP)没有显著影响,但对土壤微生物熵N(qMBN)存在显著影响。(3)土壤-微生物化学计量不平衡性Cimb:Nimb随自然恢复演替进程呈先降后升的显著变化趋势,Cimb:Pimb呈不显著的降低趋势,Nimb:Pimb呈现显著降低趋势。冗余分析显示,Nimb:Pimb和Cmic:Nmic是影响qMB变化的主导因子,其中Nimb:Pimb解释了qMB变化的62.6%,说明土壤氮磷及其活性组分(Nmic和Pmic)含量变化可能会影响到qMB变化。综上可知,次生林近60 年的自然恢复演替引起了土壤碳氮磷含量的显著变化;天然次生林土壤-微生物生物量碳氮磷化学计量比主要受到氮磷的协同影响,且SF60土壤质量状况较差,为此,对SF60林分可适当增加氮素供给以促进其林木生长,进而提升土壤质量。  相似文献   

19.
We investigated microbial responses in a late successional sedge-dominated alpine grassland to four seasons of CO2 enrichment. Part of the plots received fertilizer equivalent to 4.5g N m−2 a−1. Soil basal respiration (R mic ), the metabolic quotient for CO2 (qCO2=R mic /C mic ), microbial C and N (C mic and N mic ) as well as total soil organic C and N showed no response to CO2 enrichment alone. However, when the CO2 treatment was combined with fertilizer addition R mic and qCO2 were statistically significantly higher under elevated CO2 than under ambient conditions (+57% and +71%, respectively). Fertilizer addition increased microbial N pools by 17%, but this was not influenced by elevated CO2. Microbial C was neither affected by elevated CO2 nor fertilizer. The lack of a CO2-effect in unfertilized plots was suprising in the light of our evidence (based on C balance) that enhanced soil C inputs must have occurred under elevated CO2 regardless of fertilizer treatment. Based on these data and other published work we suggest that microbial responses to elevated CO2 in such stable, late-successional ecosystems are limited by the availability of mineral nutrients and that results obtained with fertile or heavily disturbed substrates are unsuitable to predict future microbial responses to elevated CO2 in natural systems. However, when nutrient limitation is removed (e.g. by wet nitrogen deposition) microbes make use of the additional carbon introduced into the soil system. We believe that the response of natural ecosystems to elevated CO2 must be studied in situ in natural, undisturbed systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号