首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male Sprague-Dawley rats were fed an iron-deficient diet for 8 days. After this period, iron stores were repleted in three groups of animals by intravenous administration of iron dextran. In a second set of experiments, iron was administered in the same dose as Fe nitrilotriacetic acid complex. 12 h, 24 h and 48 h thereafter, the intestinal iron transfer in vitro and in vivo as well as the non-heme iron and ferritin content were determined in both the liver and the jejunal mucosa. In iron deficiency, intestinal iron transfer is increased to 230% of untreated controls, while non-heme iron and ferritin decreased to 20% and 10% in the liver and to 55% and 25% in the mucosa, respectively. 12 h and 24 h after parenteral administration of 0.1 mmol Fe/kg body weight iron transfer was as high as in iron deficiency, while liver iron stores were not significantly different from the untreated controls. In this situation, the close link between decreases in body iron stores and increases in iron transfer was temporarily dissociated. This can be related to the time lag between the incorporation of parenterally applied iron in the liver and in the jejunal mucosa. The data provide evidence for the hypothesis that the hepatic iron stores have no means of neural or hormonal communication with the small intestine in order to adapt iron transfer to their state of repletion on short notice. Intestinal iron transfer returned to control levels after 48 h.  相似文献   

2.
Hepatic iron uptake and metabolism were studied by subcellular fractionation of rat liver homogenates after injection of rats with a purified preparation of either native or denatured rat transferrin labelled with 125I and 59Fe. (1) With native transferrin, hepatic 125I content was maximal 5 min after injection and then fell. Hepatic 59Fe content reached maximum by 16 h after injection and remained constant for 14 days. Neither label appeared in the mitochondrial or lysosomal fractions. 59Fe appeared first in the supernatant and, with time, was detectable as ferritin in fractions sedimented with increasingly lower g forces. (2) With denatured transferrin, hepatic content of both 125I and 59Fe reached maximum by 30 min. Both appeared initially in the lysosomal fraction. With time, they passed into the supernatant and 59Fe became incorporated into ferritin. The study suggests that hepatic iron uptake from native transferrin does not involve endocytosis. However, endocytosis of denatured transferrin does occur. After the uptake process, iron is gradually incorporated into ferritin molecules, which subsequently polymerize; there is no incorporation into other structures over 14 days.  相似文献   

3.
Iron distribution in subcellular fractions was investigated at different times after a single cohort of 59Fe-125 I-labeled transferrin (Tf) endocytosis in K562 cells. Cell homogenates prepared by hypotonic lysis and deoxyribonuclease (DNAase) treatment were fractionated on Percoll density gradients. Iron-containing components in the postmitochondrial supernatant were further fractionated according to their molecular weight using gel chromatography and membrane filtration. In the initial phases of endocytosis, both iron and Tf were found in the light vesicular fraction. After 3 min the labels diverged, with iron appearing in the postmitochondrial supernatant and Tf in the heavy fraction containing mitochondria, lysosomes and nuclei. Iron released from Tf-containing vesicles appeared both in low- and high-molecular-weight fractions in the postmitochondrial supernatant. After 5 min of endocytosis 59Fe activity in the low-molecular-weight fraction remained constant and 59Fe accumulated in a high-molecular-weight fraction susceptible to desferrioxamine chelation. After 10 min, 59Fe radioactivity in this fraction decreased and a majority of cytosolic 59Fe was found in ferritin. These results do not support the concept of the cytosolic low-molecular-weight iron pool as a kinetic intermediate between transferrin and ferritin iron in K562 cells.  相似文献   

4.
The mechanism of action of the hydroxamate iron chelators desferrioxamine (DFO), rhodotorulic acid (RHA) and cholylhydroxamic acid (CHA) was studied using rat hepatocytes in culture. Each chelator affected both the uptake and, to a much smaller extent, the release of transferrin-125I-59Fe from the cells. All chelators reduced the 59Fe uptake and incorporation into ferritin in a concentration-dependent manner. Uptake of 59Fe into the membrane (stromal-mitochondrial) fraction was also decreased by DFO and RHA but increased by CHA. Transferrin-125I binding was reduced slightly by DFO and RHA and increased by CHA. All chelators released 59Fe transferrin-125I from hepatocytes prelabelled by incubation with rat transferrin-125I-59Fe and washed before reincubation in the presence of the chelators. DFO decreased membrane 59Fe but had little effect on ferritin-59Fe. RHA decreased 59Fe in both membrane and ferritin fractions. CHA decreased hepatocyte-59Fe but increased 59Fe in the hepatocyte membrane fraction. Higher concentrations of the chelators had little further effect on 59Fe release but promoted transferrin-125I release from hepatocytes. All chelators appeared to act on kinetically important iron pools of limited size and hence are likely to be most effective when given by continuous infusion rather than bolus injection.  相似文献   

5.
The effects of various maneuvers on the handling of 59Fe-labeled heat-damaged red cells (59Fe HDRC) by the reticuloendothelial system were studied in rats. Raising the saturation of transferrin with oral carbonyl iron had little effect on splenic release of 59Fe but markedly inhibited hepatic release. Splenic 59Fe release was, however, inhibited by the prior administration of unlabeled HDRC or by the combination of carbonyl iron and unlabeled HDRC. When carbonyl iron was administered with unlabeled free hemoglobin, the pattern of 59Fe distribution was the same as that observed when carbonyl iron was given alone. 59Fe ferritin was identified in the serum after the administration of 59Fe HDRC but the size of the fraction was not affected by raising the saturation of transferrin. Sizing column analyses of tissue extracts from the spleen at various times after the administration of 59Fe HDRC revealed a progressive shift from hemoglobin to ferritin, with only small amounts present in a small molecular weight fraction. The small molecular weight fraction was greater in hepatic extracts, with the difference being marked in animals that had received prior carbonyl iron. The increased hepatic retention of 59Fe associated with a raised saturation of transferrin was reduced by a hydrophobic ferrous chelator (2,2'-bipyridine), a hydrophilic ferric chelator (desferrioxamine), and an extracellular hydrophilic ferric chelator (diethylene-triaminepentacetic acid). Transmembrane iron transport did not seem to be a rate-limiting factor in iron release, since no differences in 59Fe membrane fractions were noted in the different experimental settings. These findings are consistent with a model in which RE cells release iron from catabolized red cells at a relatively constant rate. When the saturation of transferrin is raised, a significant proportion of the iron is transported from the spleen to the liver either in small molecular weight complexes or in ferritin. Although a saturated transferrin had no effect on the release of iron from reticuloendothelial cells, prior loading with HDRC conditions them to release less iron.  相似文献   

6.
In order to investigate the intracellular pathway of iron to ferritin, rabbit alveolar macrophages were incubated with 59FCl3, homogenized by sonification, and a soluble cell fraction separated from the stroma by centrifugation at 23 000 g. The soluble fraction was examined by gel filtration using Sephadex. Two peaks were identified in the eluate at 254 nm; peak I contained a group of proteins, including ferritin, and most of the eluted radioactivity. The 59Fe in this peak was confined to ferritin; no other 59Fe-binding protein was identified. Peak II contained a small amount of 59Fe. Chase experiments with ‘cold’ iron showed that peak I 59Fe was derived from 59Fe associated with the cell stroma. A protein carrier for 59Fe between the stroma and ferritin was not identified in the eluate of the soluble fraction. Rather it appeared that iron moved from the stroma through the cytoplasm to ferritin in a low molecular weight form.  相似文献   

7.
The subcellular localization of ferritin and its iron taken up by rat hepatocytes was investigated by sucrose-density-gradient ultracentrifugation of cell homogenates. After incubation of hepatocytes with 125I-labelled [59Fe]ferritin, cells incorporate most of the labels into structures equilibrating at densities where acid phosphatase and cytochrome c oxidase are found, suggesting association of ferritin and its iron with lysosomes or mitochondria. Specific solubilization of lysosomes by digitonin treatment indicates that, after 8 h incubation, most of the 125I is recovered in lysosomes, whereas 59Fe is found in mitochondria as well as in lysosomes. As evidenced by gel chromatography of supernatant fractions, 59Fe accumulates with time in cytosolic ferritin. To account for these results a model is proposed in which ferritin, after being endocytosed by hepatocytes, is degraded in lysosomes, and its iron is released and re-incorporated into cytosolic ferritin and, to a lesser extent, into mitochondria.  相似文献   

8.
Following a pulse with 59Fe-transferrin, K562 erythroleukemia cells incorporate a significant amount of 59Fe into ferritin. Conditions or manipulations which alter the supply of iron to cells result in changes in the rate of ferritin biosynthesis with consequent variations in the size of the ferritin pool. Overnight exposure to iron donors such as diferric transferrin or hemin increases the ferritin level 2-4- or 6-8-fold above that of the control, respectively. Treatment with the anti-human transferrin receptor antibody, OKT9 (which reduces the iron uptake by decreasing the number of transferrin receptors) lowers the ferritin level by approximately 70-80% with respect to the control. The fraction of total cell-associated 59Fe (given as a pulse via transferrin) that becomes ferritin bound is proportional to the actual ferritin level and is independent of the instantaneous amount of iron taken up. This has allowed us to establish a curve that correlates different levels of intracellular ferritin with corresponding percentages of incoming iron delivered to ferritin. Iron released from transferrin appears to distribute to ferritin according to a partition function; the entering load going into ferritin is set for a given ferritin level over a wide range of actual amounts of iron delivered.  相似文献   

9.
This paper describes a study of the incorporation of 5 9Fe from 5 9Fe-labelled rat transferrin into rat bone marrow cells in culture. 5 9Fe was found in both stroma and cytoplasm of marrow cells, and the cytoplasmic 5 9Fe separated by polyacrylamide gel electrophoresis, into ferritin, haemoglobin and a low molecular weight fraction.The incorporation of 5 9Fe into all three cytoplasmic fractions, but not into the stroma, increased progressively with time. Erythropoietin stimulated the increase of 5 9Fe in ferritin within 1 h, the earliest time examined, and more than 3 h later in the stroma and haemoglobin.A proportion of the 59Fe incorporated into the stroma and low molecular weight iron fractions during a 1 h incubation with 59Fe-labelled transferrin was mobilised into ferritin and haemoglobin during a subsequent 4-h “cold-chase”. Erythropoietin, when present during the “cold-chase”, did not influence these 59Fe fluxes. The erythropoietin stimulation of 59Fe incorporation into ferritin, one of the earliest erythropoietin effects to be recorded, was therefore considered to be due to an increase of 59Fe uptake by the hormone-responsive cells rather than a direct effect on ferritin synthesis.20-h cultures containing erythropoietin when incubated with 59Fe-labelled transferrin for 4 h, showed dose-related erythropoietin stimulation of 59Fe incorporation into haemoglobin only.In the presence of 10 mM isonicotinic acid hydrazide, 59Fe incorporation into haemoglobin was inhibited, as in reticulocytes (Ponka, P. and Neuwirt, J. (1969) Blood 33, 690–707), while that into the stroma, ferritin and low molecular weight iron fractions, was stimulated; there were no reproducible effects of erythropoietin.  相似文献   

10.
Ferritin iron kinetics and protein turnover in K562 cells   总被引:4,自引:0,他引:4  
The binding, incorporation, and release of iron by ferritin were investigated in K562 cells using both pulse-chase and long term decay studies with 59Fe-transferrin as the labeled iron source. After a 20-min pulse of labeled transferrin, 60% of the 59Fe was bound by ferritin with the proportion increasing to 70% by 4 h. This initial binding was reduced to 35% when the cells were exposed to the chelator desferrioxamine (5 mM) for an additional 30 min. By 4 h the association of 59Fe with ferritin was unaffected by the presence of the chelator, and levels of 59Fe-ferritin were identical to those in control cells (70%). Between 4-10h there was a parallel decline in 59Fe-ferritin in both control and desferrioxamine-treated cells. When incoming iron was bound by ferritin it was, therefore, initially chelatable but with time progressed to a further, nonchelatable compartment. In turnover studies where ferritin was preloaded with 59Fe by overnight incubation, 50% of the label was released from the protein by 18 h, contrasting with a t 1/2 for cellular iron release of approximately 70 h. The half-time of 59Fe release from ferritin was accelerated to 11 h by the presence of desferrioxamine. The half-time for ferritin protein turnover determined by [35S]methionine labeling was approximately 12 h in the presence or absence of the chelator. Thus, when the reassociation of iron with ferritin was prevented by the exogenous chelator there was a concordant decay of both protein and iron moieties. The direct involvement of lysosomes in this turnover was demonstrated by the use of the inhibitors leupeptin and methylamine which stabilized both 59Fe (t 1/2 = 24 h) and 35S (t 1/2 = 25.6 h) labels. We conclude that in this cell type the predominant mechanism by which iron is released from ferritin is through the constitutive degradation of the protein by lysosomes.  相似文献   

11.
Liver depot iron can be divided into two fractions: ferritin iron and non-ferritin depot iron. Three methods intended to measure the non-ferritin depot iron in the rat liver were compared using livers of normal rats and livers of rats loaded with iron by transfusion of erythrocytes. Liver depot iron varied between 75 and 850 μg Fe/g liver. Non-ferritin depot iron, measured as the iron fraction sedimentable at 10 000 × g, was in the range 4–22 μg Fe/g liver. This fraction did contain ferritin. When measured as the difference between total liver depot iron and heat-stable iron (ferritin iron), the range was 10–270 μg Fe/g liver but this fraction also includes some ferritin iron.The values derived with both methods were linearly proportional to the total liver depot iron values.Non-ferritin depot iron, when measured as the difference between total liver depot iron and total ferritin iron, ranged from 0 to 190 μg Fe/g liver. In this last method no ferritin iron is included. This method provides the best estimate of the non-ferritin depot iron fraction. The concentrations obtained with this method were not always linearly proportional to the total liver depot iron concentration. Intravenous injection of rat liver ferritin resulted in a rapid accumulation of ferritin iron in the liver, together with an increase of the non-ferritin depot iron fraction from 18 μg Fe/g liver to 55 μg Ge/g liver. This confirms a relationship between ferritin catabolism and the non-ferritin depot iron fraction.  相似文献   

12.
Thirty minutes following an intragastric dose of [59]Fe, rats subjected to short-term and long-term iron depletion showed a similar increase in [59]Fe in plasma and a similar decrease in the retention of [59]Fe in mucosal cytosol compared to controls. With both low-iron groups, a two-fold increase in [59]Fe uptake by brush-border membrane vesicles and a six-fold reduction in the [59]Fe incorporated into the ferritin of the mucosal cytosol were observed. These studies indicate that short-term exposure to a low-iron diet triggers changes in both the uptake of iron by the brush-border membrane and the processing of iron within the mucosal cell prior to major changes in body iron status.  相似文献   

13.
Ferritin and its protein subunits in rat hepatoma cell clone M-5123-C1 were biosynthetically labeled with [14C]leucine and 59Fe. Radioimmunoassays of ferritin/apoferritin and of protein subunits in the free polyribosome, membrane-bound polyribosome, smooth membrane, and cytosol fractions were done with ferritin-specific and subunit-specific rabbit IgG antibodies at various time intervals after pulsing. Much more 59Fe was bound by ferritin/apoferritin than by subunits in all of the cell fractions. Binding of iron to subunits may have been a random process. When hepatoma cells were simultaneously pulse-labeled with 59Fe and [14C]leucine, uptake of much of the 59Fe by ferritin occurred relatively early, in comparison to incorporation of [14C]leucine, in all of the cell fractions examined. Thus, 59Fe was readily incorporated into pre-existing ferritin. We conclude that most, if not nearly all, of the iron is incorporated after assembly of protein subunits.  相似文献   

14.
Equilibrium-dialysis experiments with 59Fe-labelled Fe(III) chelate solutions show that ferritin is capable of binding a limited number of Fe(III) atoms. Some of this Fe(III) is readily removed, but up to about 200 Fe(III) atoms/molecule remain bound after extensive washing. Some exchange of labelled Fe(III) with endogenous unlabelled ferritin Fe occurs during prolonged dialysis against 59Fe(III)-citrate, but there is a net binding of Fe(III). Bound Fe(III) resembles endogenous Fe(III) in several respects. It appears to be attached to the micelle and not to the protein component of ferritin. Although the physiological mechanism of Fe incorporation into ferritin is unknown, our experiments suggest the possibility that some iron finds its way into ferritin as Fe(III) chelate.  相似文献   

15.
Iron transport across polarized intestinal epithelium was studied by using Caco-2 cells grown in bicameral chambers. When cells were grown under conditions of low, normal, or high iron concentration not only was the iron content of the cells markedly altered but the low iron cells exhibited a nearly 2-fold increase in transepithelial electrical resistance (TEER). 59Fe uptake from the apical surface into cells and transport into the basal chamber was affected both by the valency of the iron and the iron status of the cells. Uptake from 59Fe(II)-ascorbate was about 600 pmol 59Fe/h per mg protein, increased about 2-fold in low iron cells, and was about 13-200-fold greater than uptakes from 59Fe(III) chelated to nitrilotriacetic acid, BSA, or citrate. Transport into the basal chamber from 59Fe(II)-ascorbate was 3.7 +/- 1.7 pmol/h per cm2 for Fe-deficient cells vs. 0.72 +/- 0.1 pmol/h per cm2 for normal-Fe cells and from 59Fe(III)-BSA 1.1 +/- 0.2 pmol/h per cm2 vs. 0.3 +/- 0.03 pmol/h per cm2 for deficient vs. normal iron cells, respectively. The greater transport of iron both from Fe(II) and in iron deficient cells supports the use of the Caco-2 cells as a model for iron transport.  相似文献   

16.
Intracellular ferritin in newt (Triturus cristatus) erythroblasts was accessible to the chelating effects of EDTA and pyridoxal phosphate. EDTA (0.5-1 mM) promoted release of radioactive iron from ferritin of pulse-labelled erythroblasts during chase incubation, but its continuous presence was not necessary for ferritin iron mobilization. Brief exposure to EDTA was sufficient to release 60-70% of ferritin 59Fe content during ensuing chase in EDTA-free medium. EDTA also suppressed cellular iron uptake and utilization for heme synthesis, but these activities were restored upon its removal. Pyridoxal-5'-phosphate (0.5-5 mM) also stimulated loss of radioactive iron from ferritin; however, ferritin iron release by pyridoxal phosphate required its continued presence. Unlike EDTA, pyridoxal phosphate did not interfere with iron uptake or its utilization for heme synthesis. Chelator-mobilized ferritin iron accumulated initially in the hemolysate as a low-molecular-weight component and appeared to be eventually released into the medium. No radioactive ferritin was found in the medium of chelator-treated cells, indicating that secretion or loss of ferritin was not responsible for decreasing cellular ferritin 59Fe content. Moreover, there was no transfer of radioactive iron between the low-molecular-weight component released into the medium and plasma transferrin. These results indicate that chelator-released ferritin iron is not available for cellular utilization in heme synthesis and that ferritin iron released by this process is not an alternative or complementary iron source for heme synthesis. Correlation of these data with effects of succinylacetone inhibition of heme synthesis and with previous studies indicates that the main role of erythroid cell ferritin is absorption and storage of excess iron not used for heme synthesis.  相似文献   

17.
The subcellular localization of 3H-labelled 59Fe-loaded transferrin accumulated by the liver has been studied by means of cell fractionation techniques. More than 96% of the 59Fe present in the liver of rats perfused with 59Fe-labelled transferrin is recovered in the parenchymal cells. Rat livers were perfused with 10 micrograms/ml 3H-labelled 59Fe-saturated transferrin, homogenized separated in nuclear (N), mitochondrial (M), light mitochondrial (L), microsomal (P) and supernatant (S) fractions; M, L and P fractions were further analysed by isopycnic centrifugation in sucrose gradients. 3H label distributes essentially around densities of 1.13-1.14 g/ml overlapping to a large extent with the distribution of galactosyltransferase, the marker enzyme of the Golgi complex. However, after treatment with low concentrations of digitonin the 3H label dissociates from galactosyltransferase and is shifted to higher densities, suggesting an association of transferrin with cholesterol-rich endocytic vesicles which could derive from the plasma membrane. 59Fe is mostly found in the supernatant fraction largely in the form of ferritin, as indicated by its reaction with antiferritin antibodies. In the mitochondrial fraction the density distribution of 59Fe suggests an association with lysosomes and/or mitochondria. In contrast to the lysosomal enzyme cathepsin B, the density distribution of 59Fe was only slightly affected by pretreatment of the rats with Triton WR 1339, suggesting its association with the mitochondria. At 15 degrees C, 59Fe and 3H labels are recovered together in low-density endocytic vesicles. On the basis of our results we suggest that, at low extracellular transferrin concentration, iron uptake by the liver involves endocytosis of the transferrin protein. The complex is interiorized in low-density acidic vesicles where iron is released. The iron passes into the cytosol, where it is incorporated into ferritin and into the mitochondria. The iron-depleted transferrin molecule would then be returned to the extracellular medium during the recycling of the plasma membrane.  相似文献   

18.
A commercially available enzyme immunoassay was used to determine ferritin content and subsequently the loading and release of iron from ferritin in neuroblastoma cells. LS cells were incubated with 59Fe for 24 h, lysed, and the cytoplasmic ferritin was bound to monoclonal antibodies coupled to globules. After determination of the ferritin content the same globules with bound radioactive ferritin were measured in a gamma-counter. To illustrate the applicability of this test system, increased iron loading of cellular ferritin could be demonstrated in cycloheximide-treated cells; furthermore, release of iron was documented after incubation of LS cells with a combination of 6-hydroxydopamine and ascorbate. The assay turned out to be a simple method for determination of changes in 59Fe content of ferritin in neuroblastoma cells.  相似文献   

19.
Ferric minerals in ferritins are protected from cytoplasmic reductants and Fe2+ release by the protein nanocage until iron need is signaled. Deletion of ferritin genes is lethal; two critical ferritin functions are concentrating iron and oxidant protection (consuming cytoplasmic iron and oxygen in the mineral). In solution, opening/closing (gating) of eight ferritin protein pores controls reactions between external reductant and the ferritin mineral; pore gating is altered by mutation, low heat, and physiological urea (1 mm) and monitored by CD spectroscopy, protein crystallography, and Fe2+ release rates. To study the effects of a ferritin pore gating mutation in living cells, we cloned/expressed human ferritin H and H L138P, homologous to the frog open pore model that was unexpressable in human cells. Human ferritin H L138P behaved like the open pore ferritin model in vitro as follows: (i) normal protein cage assembly and mineralization, (ii) increased iron release (t1/2) decreased 17-fold), and (iii) decreased alpha-helix (8%). Overexpression (> 4-fold), in HeLa cells, showed for ferritin H L138P equal protein expression and total cell 59Fe but increased chelatable iron, 16%, p < 0.01 (59Fe in the deferoxamine-containing medium), and decreased 59Fe in ferritin, 28%, p < 0.01, compared with wild type. The coincidence of decreased 59Fe in open pore ferritin with increased chelatable 59Fe in cells expressing the ferritin open pore mutation suggests that ferritin pore gating influences to the amount of iron (59Fe) in ferritin in vivo.  相似文献   

20.
Four aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of erythroid differentiation by dimethyl sulfoxide. (1) The binding of 125I-labeled transferrin was determined over a range of transferrin concentrations from 0.5 to 15 μM. Scatchard analysis of the binding curves demonstrated equivalent numbers of transferrin binding sites per cell: 7.78 ± 2.41 · 105 in non-induced cells and 9.28 ± 1.57 · 105 after 4 days of exposure to dimethyl sulfoxide. (2) The rate of iron transport was determined by measuring iron uptake from 59Fe-labeled transferrin. Iron uptake in non-induced cells was approx. 17 000 molecules of iron/cell per min; 24 h after addition of dimethyl sulfoxide it increased to 38 000, and it rose to maximal levels of approx. 130 000 at 72 h. (3) Heme synthesis, assayed qualitatively by benzidine staining and measured quantitatively by incorporation of 59Fe or [2-14C]glycine into cyclohexanone-extracted or crystallized heme, was not detected until 3 days after addition of dimethyl sulfoxide, when 12% of the cells were stained by benzidine and 6 pmol 59Fe and 32 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. After 4 days, 60% of the cells were benzidine positive and 34 pmol 59Fe and 90 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. (4) The rate of incorporation of 59Fe into ferritin, measured by immunoprecipitation of ferritin by specific antimouse ferritin immunoglobulin G, rose from 4.4 ± 0.6 cells to 18.4 ± 1.3 pmol 59Fe/h per 108 cells 3 days after addition of dimethyl sulfoxide, and then fell to 11.6 ± 3.1 pmol 4 days after dimethyl sulfoxide when heme synthesis was maximal. These studies indicate that one or more steps in cellular iron transport distal to transferrin binding is induced early by dimethyl sulfoxide and that ferritin may play an active role in iron delivery for heme synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号