首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Completion of mitotic exit and cytokinesis requires the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. A key enzyme that counteracts Cdk during budding yeast mitotic exit is the Cdc14 phosphatase. Cdc14 is inactive for much of the cell cycle, sequestered by its inhibitor Net1 in the nucleolus. At anaphase onset, separase-dependent down-regulation of PP2ACdc55 allows phosphorylation of Net1 and consequent Cdc14 release. How separase causes PP2ACdc55 down-regulation is not known. Here, we show that two Cdc55-interacting proteins, Zds1 and Zds2, contribute to timely Cdc14 activation during mitotic exit. Zds1 and Zds2 are required downstream of separase to facilitate nucleolar Cdc14 release. Ectopic Zds1 expression in turn is sufficient to down-regulate PP2ACdc55 and promote Net1 phosphorylation. These findings identify Zds1 and Zds2 as new components of the mitotic exit machinery, involved in activation of the Cdc14 phosphatase at anaphase onset. Our results suggest that these proteins may act as separase-regulated PP2ACdc55 inhibitors.  相似文献   

2.
Exit from mitosis in budding yeast is triggered by activation of the key mitotic phosphatase Cdc14. At anaphase onset, the protease separase and Zds1 promote the downregulation of PP2ACdc55 phosphatase, which facilitates Cdk1-dependent phosphorylation of Net1 and provides the first wave of Cdc14 activity. Once Cdk1 activity starts to decline, the mitotic exit network (MEN) is activated to achieve full Cdc14 activation. Here we describe how the PP2ACdc55 phosphatase could act as a functional link between FEAR and MEN due to its action on Bfa1 and Mob1. We demonstrate that PP2ACdc55 regulates MEN activation by facilitating Cdc5- and Cdk1-dependent phosphorylation of Bfa1 and Mob1, respectively. Downregulation of PP2ACdc55 initiates MEN activity up to Cdc15 by Bfa1 inactivation. Surprisingly, the premature Bfa1 inactivation observed does not entail premature MEN activation, since an additional Cdk1-Clb2 inhibitory signal acting towards Dbf2-Mob1 activity restrains MEN activity until anaphase. In conclusion, we propose a clear picture of how PP2ACdc55 functions affect the regulation of various MEN components, contributing to mitotic exit.  相似文献   

3.
Akiyoshi B  Biggins S 《Genetics》2010,186(4):1487-1491
The budding yeast Cdc14 phosphatase reverses Cdk1 phosphorylation to promote mitotic exit. Although Cdc14 activity is thought to be restricted to anaphase, we found that dephosphorylation of the Dsn1 kinetochore protein in metaphase requires Cdc14. These data suggest that there is a nonnucleolar pool of active Cdc14 prior to anaphase.  相似文献   

4.
Hancioglu B  Tyson JJ 《PloS one》2012,7(2):e30810
Cell cycle progression in eukaryotes is regulated by periodic activation and inactivation of a family of cyclin-dependent kinases (Cdk's). Entry into mitosis requires phosphorylation of many proteins targeted by mitotic Cdk, and exit from mitosis requires proteolysis of mitotic cyclins and dephosphorylation of their targeted proteins. Mitotic exit in budding yeast is known to involve the interplay of mitotic kinases (Cdk and Polo kinases) and phosphatases (Cdc55/PP2A and Cdc14), as well as the action of the anaphase promoting complex (APC) in degrading specific proteins in anaphase and telophase. To understand the intricacies of this mechanism, we propose a mathematical model for the molecular events during mitotic exit in budding yeast. The model captures the dynamics of this network in wild-type yeast cells and 110 mutant strains. The model clarifies the roles of Polo-like kinase (Cdc5) in the Cdc14 early anaphase release pathway and in the G-protein regulated mitotic exit network.  相似文献   

5.
Cdk1 drives both mitotic entry and the metaphase-to-anaphase transition. Past work has shown that Wee1 inhibition of Cdk1 blocks mitotic entry. Here we show that the budding yeast Wee1 kinase, Swe1, also restrains the metaphase-to-anaphase transition by preventing Cdk1 phosphorylation and activation of the mitotic form of the anaphase-promoting complex/cyclosome (APCCdc20). Deletion of SWE1 or its opposing phosphatase MIH1 (the budding yeast cdc25+) altered the timing of anaphase onset, and activation of the Swe1-dependent morphogenesis checkpoint or overexpression of Swe1 blocked cells in metaphase with reduced APC activity in vivo and in vitro. The morphogenesis checkpoint also depended on Cdc55, a regulatory subunit of protein phosphatase 2A (PP2A). cdc55Δ checkpoint defects were rescued by mutating 12 Cdk1 phosphorylation sites on the APC, demonstrating that the APC is a target of this checkpoint. These data suggest a model in which stepwise activation of Cdk1 and inhibition of PP2ACdc55 triggers anaphase onset.  相似文献   

6.
In the budding yeast Saccharomyces cerevisiae, Cdc14 is sequestered within the nucleolus before anaphase entry through its association with Net1/Cfi1, a nucleolar protein. Protein phosphatase PP2ACdc55 dephosphorylates Net1 and keeps it as a hypophosphorylated form before anaphase. Activation of the Cdc fourteen early anaphase release (FEAR) pathway after anaphase entry induces a brief Cdc14 release from the nucleolus. Some of the components in the FEAR pathway, including Esp1, Slk19, and Spo12, inactivate PP2ACdc55, allowing the phosphorylation of Net1 by mitotic cyclin-dependent kinase (Cdk) (Clb2-Cdk1). However, the function of another FEAR component, the Polo-like kinase Cdc5, remains elusive. Here, we show evidence indicating that Cdc5 promotes Cdc14 release primarily by stimulating the degradation of Swe1, the inhibitory kinase for mitotic Cdk. First, we found that deletion of SWE1 partially suppresses the FEAR defects in cdc5 mutants. In contrast, high levels of Swe1 impair FEAR activation. We also demonstrated that the accumulation of Swe1 in cdc5 mutants is responsible for the decreased Net1 phosphorylation. Therefore, we conclude that the down-regulation of Swe1 protein levels by Cdc5 promotes FEAR activation by relieving the inhibition on Clb2-Cdk1, the kinase for Net1 protein.  相似文献   

7.
Entry into mitosis of the eukaryotic cell cycle is driven by rising cyclin-dependent kinase (Cdk) activity. During exit from mitosis, Cdk activity must again decline. Cdk downregulation by itself, however, is not able to guide mitotic exit, if not a phosphatase reverses mitotic Cdk phosphorylation events. In budding yeast, this role is played by the Cdc14 phosphatase. We are gaining an increasingly detailed picture of its regulation during anaphase, and of the way it orchestrates ordered progression through mitosis. Much less is known about protein dephosphorylation during mitotic exit in organisms other than budding yeast, but evidence is now mounting for crucial contributions of regulated phosphatases also in metazoan cells.  相似文献   

8.
During meiosis, one round of deoxyribonucleic acid replication is followed by two rounds of nuclear division. In Saccharomyces cerevisiae, activation of the Cdc14 early anaphase release (FEAR) network is required for exit from meiosis I but does not lead to the activation of origins of replication. The precise mechanism of how FEAR regulates meiosis is not understood. In this paper, we report that premature activation of FEAR during meiosis caused by loss of protein phosphatase PP2A(Cdc55) activity blocks bipolar spindle assembly and nuclear divisions. In cdc55 meiotic null (cdc55-mn) cells, the cyclin-dependent kinase (Cdk)-counteracting phosphatase Cdc14 was released prematurely from the nucleolus concomitant with hyperphosphorylation of its nucleolar anchor protein Net1. Crucially, a mutant form of Net1 that lacks six Cdk phosphorylation sites rescued the meiotic defect of cdc55-mn cells. Expression of a dominant mutant allele of CDC14 mimicked the cdc55-mn phenotype. We propose that phosphoregulation of Net1 by PP2A(Cdc55) is essential for preventing precocious exit from meiosis I.  相似文献   

9.
Stegmeier F  Visintin R  Amon A 《Cell》2002,108(2):207-220
In budding yeast, the phosphatase Cdc14, a key regulator of exit from mitosis, is released from its inhibitor Cfi1/Net1 in the nucleolus during anaphase. A signaling cascade, known as the mitotic exit network (MEN), controls this release. We have identified a regulatory network, the FEAR (Cdc fourteen early anaphase release) network that promotes Cdc14 release from the nucleolus during early anaphase. The FEAR network is comprised of the polo kinase Cdc5, the separase Esp1, the kinetochore-associated protein Slk19, and Spo12. We also show that the FEAR network initiates Cdc14 release from Cfi1/Net1 during early anaphase, and MEN maintains Cdc14 in the released state during late anaphase. We propose that one function of Cdc14 released by the FEAR network is to stimulate MEN activity.  相似文献   

10.
Separase is a protease that triggers chromosome segregation at anaphase onset by cleaving cohesin, the chromosomal protein complex responsible for sister chromatid cohesion. After anaphase, cells exit from mitosis; that is, they complete downregulation of cyclin-dependent kinase activity, undergo cytokinesis and enter G1 of the next cell cycle. Here we show that separase activation at the onset of anaphase is sufficient to promote release from the nucleolus and activation of the budding yeast phosphatase, Cdc14, a key step in mitotic exit. The ability of separase to activate Cdc14 is independent of its protease function but may involve promoting phosphorylation of the Cdc14 inhibitor Net1. This novel separase function is coregulated with its proteolytic activity by the separase inhibitor securin. This helps to explain the coupling of anaphase and mitotic exit--after securin degradation at anaphase onset, separase cleaves cohesin to trigger chromosome segregation and concurrently uses a non-proteolytic mechanism to initiate mitotic exit.  相似文献   

11.
Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2ACdc55 phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2) bind to PP2ACdc55 in a cell cycle-regulated manner upon Greatwall (Rim15)-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2ACdc55 activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2ACdc55, timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2ACdc55, which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms.  相似文献   

12.
Metaphase of mitosis is brought about in all eukaryotes by activation of cylin-dependent kinase (Cdk1), whereas exit from mitosis requires down-regulation of Cdk1 activity and dephosphorylation of its target proteins. In budding yeast, the completion of mitotic exit requires the release and activation of the Cdc14 protein-phosphatase, which is kept inactive in the nucleolus during most of the cell cycle. Activation of Cdc14 is controlled by two regulatory networks called FEAR (Cdc fourteen early anaphase release) and MEN (mitotic exit network). We have shown recently that the anaphase promoting protease (separase) is essential for Cdc14 activation, thereby it makes mitotic exit dependent on execution of anaphase. Based on this finding, we have proposed a new model for mitotic exit in budding yeast. Here we explain the essence of the model by phaseplane analysis, which reveals two underlying bistable switches in the regulatory network. One bistable switch is caused by mutual activation (positive feedback) between Cdc14 activating MEN and Cdc14 itself. The mitosis-inducing Cdk1 activity inhibits the activation of this positive feedback loop and thereby controlling this switch. The other irreversible switch is generated by a double-negative feedback (mutual antagonism) between mitosis inducing Cdk1 activity and its degradation machinery (APC(Cdh1)). The Cdc14 phosphatase helps turning this switch in favor of APC(Cdh1) side. Both of these bistable switches have characteristic thresholds, the first one for Cdk1 activity, while the second for Cdc14 activity. We show that the physiological behaviors of certain cell cycle mutants are suggestive for those Cdk1 and Cdc14 thresholds. The two bistable switches turn on in a well-defined order. In this paper, we explain how the activation of Cdc20 (which causes the activation of separase and a decrease of Cdk1 kinase activity) provides an initial trigger for the activation of the MEN-Cdc14 positive feedback loops, which in turn, flips the second irreversible Cdk-APC(Cdh1) switch on the APC(Cdh1) side).  相似文献   

13.
In budding yeast, three interdigitated pathways regulate mitotic exit (ME): mitotic cyclin–cyclin-dependent kinase (Cdk) inactivation; the Cdc14 early anaphase release (FEAR) network, including a nonproteolytic function of separase (Esp1); and the mitotic exit network (MEN) driven by interaction between the spindle pole body and the bud cortex. Here, we evaluate the contributions of these pathways to ME kinetics. Reducing Cdk activity is critical for ME, and the MEN contributes strongly to ME efficiency. Esp1 contributes to ME kinetics mainly through cohesin cleavage: the Esp1 requirement can be largely bypassed if cells are provided Esp1-independent means of separating sister chromatids. In the absence of Esp1 activity, we observed only a minor ME delay consistent with a FEAR defect. Esp1 overexpression drives ME in Cdc20-depleted cells arrested in metaphase. We have found that this activity of overexpressed Esp1 depended on spindle integrity and the MEN. We defined the first quantitative measure for Cdc14 release based on colocalization with the Net1 nucleolar anchor. This measure indicates efficient Cdc14 release upon MEN activation; release driven by Esp1 in the absence of microtubules was inefficient and incapable of driving ME. We also found a novel role for the MEN: activating Cdc14 nuclear export, even in the absence of Net1.  相似文献   

14.
In budding yeast, the release of the protein phosphatase Cdc14 from its inhibitor Cfi1/Net1 in the nucleolus during anaphase triggers the inactivation of Clb CDKs that leads to exit from mitosis. The mitotic exit pathway controls the association between Cdc14 and Cfi1/Net1. It is comprised of the RAS-like GTP binding protein Tem1, the exchange factor Lte1, the GTPase activating protein complex Bub2-Bfa1/Byr4, and several protein kinases including Cdc15 and Dbf2. Here we investigate the regulation of the protein kinases Dbf2 and Cdc15. We find that Cdc15 is recruited to both spindle pole bodies (SPBs) during anaphase. This recruitment depends on TEM1 but not DBF2 or CDC14 and is inhibited by BUB2. Dbf2 also localizes to SPBs during anaphase, which coincides with activation of Dbf2 kinase activity. Both events depend on the mitotic exit pathway components TEM1 and CDC15. In cells lacking BUB2, Dbf2 localized to SPBs in cell cycle stages other than anaphase and telophase and Dbf2 kinase was prematurely active during metaphase. Our results suggest an order of function of mitotic exit pathway components with respect to SPB localization of Cdc15 and Dbf2 and activation of Dbf2 kinase. BUB2 negatively regulates all 3 events. Loading of Cdc15 on SPBs depends on TEM1, whereas loading of Dbf2 on SPBs and activation of Dbf2 kinase depend on TEM1 and CDC15.  相似文献   

15.
In eukaryotes, exit from mitosis occurs through the inactivation of the Cdk1-cyclin B kinase complex and the reversal of its phosphorylation events. These late mitotic events are tightly regulated to occur only after the onset of anaphase and prior to cytokinesis. Central to this regulation is the conserved Cdc14 family of protein phosphatases, whose activity reverses Cdk-dependent phosphorylation events. S. cerevisiae Cdc14 activity is restrained from dephosphorylating Cdk substrates and inactivating Cdk1 through its nucleolar sequestration prior to anaphase. Here, we describe a unique mode of Cdc14 regulation that operates prior to anaphase in fission yeast. Cdk1 phosphorylates and inhibits the catalytic activity of the Cdc14 family member, Clp1/Flp1. As Cdk1 activity declines during anaphase progression, Clp1/Flp1 autocatalytically reverses these phosphorylation events to stimulate its own activity. These findings point to a simple regulatory circuit that couples Cdk1 activation with its inactivation mediated through phosphorylation-dependent regulation of Clp1/Flp1 phosphatase activity.  相似文献   

16.
Cyclin-dependent kinase (CDK) governs cell cycle progression, and its kinase activity fluctuates during the cell cycle. Mitotic exit pathways are responsible for the inactivation of CDK after chromosome segregation by promoting the release of a nucleolus-sequestered phosphatase, Cdc14, which antagonizes CDK. In the budding yeast Saccharomyces cerevisiae, mitotic exit is controlled by the FEAR (for "Cdc-fourteen early anaphase release") and mitotic exit network (MEN) pathways. In response to DNA damage, two branches of the DNA damage checkpoint, Chk1 and Rad53, are activated in budding yeast to prevent anaphase entry and mitotic exit, allowing cells more time to repair damaged DNA. Here we present evidence indicating that yeast cells negatively regulate mitotic exit through two distinct pathways in response to DNA damage. Rad53 prevents mitotic exit by inhibiting the MEN pathway, whereas the Chk1 pathway prevents FEAR pathway-dependent Cdc14 release in the presence of DNA damage. In contrast to previous data, the Rad53 pathway negatively regulates MEN independently of Cdc5, a Polo-like kinase essential for mitotic exit. Instead, a defective Rad53 pathway alleviates the inhibition of MEN by Bfa1.  相似文献   

17.
Bouchoux C  Uhlmann F 《Cell》2011,147(4):803-814
After sister chromatid splitting at anaphase onset, exit from mitosis comprises an ordered series of events. Dephosphorylation of numerous mitotic substrates, which were phosphorylated by cyclin-dependent kinase (Cdk), is thought to bring about mitotic exit, but how temporal ordering of mitotic exit events is achieved is poorly understood. Here, we show, using budding yeast, that dephosphorylation of Cdk substrates involved in sequential mitotic exit events occurs with ordered timing. We test different models of how ordering might be achieved by modulating Cdk and Cdk-counteracting phosphatase Cdc14 activities in vivo, as well as by kinetic analysis of Cdk substrate phosphorylation and dephosphorylation in vitro. Our results suggest that the gradual change of the phosphatase to kinase ratio over the course of mitotic exit is read out by Cdk substrates that respond by dephosphorylation at distinct thresholds. This provides an example and a mechanistic explanation for a quantitative model of cell-cycle progression.  相似文献   

18.
The phosphatase Cdc14 is required for mitotic exit in budding yeast. Cdc14 promotes Cdk1 inactivation by targeting proteins that, when dephosphorylated, trigger degradation of mitotic cyclins and accumulation of the Cdk1 inhibitor, Sic1. Cdc14 is sequestered in the nucleolus during most of the cell cycle but is released into the nucleus and cytoplasm during anaphase. When Cdc14 is not properly sequestered in the nucleolus, expression of the S-phase cyclin Clb5 is required for viability, suggesting that the antagonizing activity of Clb5-dependent Cdk1 specifically is necessary when Cdc14 is delocalized. We show that delocalization of Cdc14 combined with loss of Clb5 causes defects in DNA replication. When Cdc14 is not sequestered, it efficiently dephosphorylates a subset of Cdk1 substrates including the replication factors, Sld2 and Dpb2. Mutations causing Cdc14 mislocalization interact genetically with mutations affecting the function of DNA polymerase epsilon and the S-phase checkpoint protein Mec1. Our findings suggest that Cdc14 is retained in the nucleolus to support a favorable kinase/phosphatase balance while cells are replicating their DNA, in addition to the established role of Cdc14 sequestration in coordinating nuclear segregation with mitotic exit.  相似文献   

19.
Divisions of the genetic material and cytoplasm are coordinated spatially and temporally to ensure genome integrity. This coordination is mediated in part by the major cell cycle regulator cyclin-dependent kinase (Cdk1). Cdk1 activity peaks during mitosis, but during mitotic exit/cytokinesis Cdk1 activity is reduced, and phosphorylation of its substrates is reversed by various phosphatases including Cdc14, PP1, PP2A, and PP2B. Cdk1 is known to phosphorylate several components of the actin- and myosin-based cytokinetic ring (CR) that mediates division of yeast and animal cells. Here we show that Cdk1 also phosphorylates the Schizosaccharomyces pombe CR component paxillin Pxl1. We determined that both the Cdc14 phosphatase Clp1 and the PP1 phosphatase Dis2 contribute to Pxl1 dephosphorylation at mitotic exit, but PP2B/calcineurin does not. Preventing Pxl1 phosphorylation by Cdk1 results in increased Pxl1 levels, precocious Pxl1 recruitment to the division site, and increased duration of CR constriction. In vitro Cdk1-mediated phosphorylation of Pxl1 inhibits its interaction with the F-BAR domain of the cytokinetic scaffold Cdc15, thereby disrupting a major mechanism of Pxl1 recruitment. Thus, Pxl1 is a novel substrate through which S. pombe Cdk1 and opposing phosphatases coordinate mitosis and cytokinesis.  相似文献   

20.
The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号