首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
The microchromosomes of Japanese quail fibroblasts are shown to be heterochromatic and nucleolus-organizing. Autoradiographic studies indicate that although some DNA replication takes place early, the time of intense replication is in the late S period after most replication in the macrochromosomes has ceased. Analytical centrifugation of quail DNA demonstrated a main band with a buoyant density of 1.701 g/cm3 and a satellite constituting about 5% of the DNA with a buoyant density of 1.715. The G-C content of the main and satellite band was 42 and 55 percent respecively by both buoyant density and DNA Tm. The satellite band renatured much more rapidly than main band DNA indicating it was composed of highly repetitive sequences. When purified satellite DNA was centrifuged at pH 13 it separated into three portions, a major central band constituting 72% of the satellite DNA, and two smaller bands, one heavier and one lighter than the central band, each constituting 14% of the satellite DNA. This indicated that in a portion of the satellite DNA the bases were non-randomly distributed in the half-DNA helices.Supported by N.I.H. Grant GM-15886, The Charles and Henrietta Detoy Research Fellowship.  相似文献   

2.
The timing of replication of centromere-associated human alpha satellite DNA from chromosomes X, 17, and 7 as well as of human telomeric sequences was determined by using density-labeling methods and fluorescence-activated cell sorting. Alpha satellite sequences replicated late in S phase; however, the alpha satellite sequences of the three chromosomes studied replicated at slightly different times. Human telomeres were found to replicate throughout most of S phase. These results are consistent with a model in which multiple initiations of replication occur at a characteristic time within the alpha satellite repeats of a particular chromosome, while the replication timing of telomeric sequences is determined by either telomeric origins that can initiate at different times during S phase or by replication origins within the flanking chromosomal DNA sequences.  相似文献   

3.
Either aphidicolin- or thymidine-synchronized human HL-60 cells were used to study the replication pattern of a family of human repetitive DNA sequences, the EcoRI 340 bp family (αRI-DNA), and of the ladders of fragments generated in total human DNA after digestion with XbaI and HaeIII (alpha satellite sequences). DNAs replicated in early, middle-early, middle-late and late S periods were labelled with BUdR or with [3H]thymidine. The efficiency of the cell synchronization procedure was confirmed by the transition from a high-GC to a high-AT average base composition of the DNA synthesized going from early to late S periods. By hybridizing EcoRI 340 bp repetitive fragments to BUdR-DNAs it was found that this family of sequences is replicated throughout the entire S period. Comparing fluorograph densitometric scans of [3H]DNAs to the scans of ethidium bromide patterns of total HL-60 DNA digested with XbaI and HaeIII, it was observed that DNA synthesized in different S periods is characterized by approximately the same ladder of fragments, while the intensity of each band may vary through the S phase; in particular, the XbaI 2.4 kb fragment becomes undetectable in late S.  相似文献   

4.
Native DNA of the Guinea pig, Cavia porcellus, purified from liver or tissue culture cells, was heat denatured and reassociated to a Cot value of 0.01 (equivalent Cot value of 7.2 x 10(-2)). The reassociated DNA was isolated by digestion with the single-strand DNA specific enzyme S1 nuclease. Spectrophotometric and radioactivity assays demonstrated that 24% of the total DNA was resistant to S1 nuclease treatment. Zero-time reassociation indicated that approximately 3% of the DNA was inverted repeat sequences. Thus, highly repeated sequences comprised 21% of the total genome. CsCl buoyant density ultracentrifugation indicated that this fraction was composed of both main band and satellite sequences. Although actinomycin D - CsCl density gradients failed to give significant separation of the repetitive sequences, distamycin A - CsCl gradients were able to fractionate the DNA into several overlapping bands. The heterogeneity of the repetitive DNA was further demonstrated by the first derivative plots calculated from their thermal denaturation profiles. This analysis revealed six major thermalytes which indicate that there may be at least six discrete components in the repetitive DNA.  相似文献   

5.
There is a complex pattern of satellite DNA sequences in M. rufus which are revealed by addition of Ag+ or dye (Hoechst 33258) to the DNA ink Cs2SO4 or CsCl equilibrium density gradients. Six satellite DNA fractions have been isolated; these have buoyant densities in neutral CsCl of 1.692, 1.704, 1.705, 1.707 (two), 1.710 and 1.712 g/ml compared with 1.696 g/ml for the main band DNA. Each satellite accounts for 1-3% of the DNA of the genome. The satellites are located in the centromeric heterochromatin of the chromosomes, in the nucleolar organizer region and in interstitial bands on some of the autosomes, each satellite having a unique distribution. Nucleic acid hybridization showed that six of the satellite sequences are also present in the genomes of the wallaroo and the red-necked wallaby, with sequence divergences of only 1-2% relative to the sequences in the red kangaroo.  相似文献   

6.
7.
The chromsomes of a cell line of Dipodomys merriami are described in terms of their C-, G- and Q-banding patterns. Studies on the buoyant density of DNA made at different times in the S phase show that the replication of HSα satellite and AT-rich main band DNA occurs preferentially late in the S phase, whereas MS satellite and GC-rich main band DNAs are replicated early in the S phase. Autoradiographic studies of chromosomes labelled early or late in the S phase are used to relate the banding patterns nf particular chromosome regions to the fraction of DNA which they may contain.  相似文献   

8.
Foldback DNA, prepared from mouse and Scilla sibirica main band DNA, and from rye (Secale cereale) total DNA, was characterised by denaturation, renaturation, and electron microscopy. 3H-cRNA of this DNA was hybridised in situ to nuclei and chromosomes of the respective species. There is no universal labelling pattern among the three species. In mouse, highly repetitive foldback DNA is present in the whole chromatin including the satellite DNA-containing regions. In Scilla sibirica, on the contrary, the highly repetitive foldback sequences are excluded form the satellite DNA loci and are arranged in clusters in the remaining chromatin. In rye, there is a clear preferential labelling of the chromocenters in the interphase nuclei as well as metaphase chromosomes, indicating that highly repetitive foldback DNA is preferentially located among other highly repetitive sequences.  相似文献   

9.
A 314-bp tandemly repeated DNA sequence, named pAc074, was characterized in Allium cepa by fluorescence in situ hybridization (FISH) analyses using random amplified fragment as probe. The nucleotide sequences of the clone pAc074 is partially homologous to the satellite DNA sequences, ACSAT1, ACSAT2, and ACSAT3, of A. cepa with 81%, 81% and 78% similarity, respectively. Our sequential C-banding and FISH with pAc074 probe also clearly showed a close relation between Cheterochromatin at telomeric region and pAc074 sequences on all the chromosomes except on chromosome 6. On the long arm of chromosome 7, pAc074 sequences appeared as interstitial band which did not correspond to C-heterochromatin bands. Instead, the C-heterochromatin bands corresponded with the 5S rDNA signals. This is the first evidence of simultaneous banding of the 5S rDNA and C-band in A. cepa.  相似文献   

10.
Either aphidicolin- or thymidine-synchronized human HL-60 cells were used to study the replication pattern of a family of human repetitive DNA sequences, the Eco RI 340 bp family (alpha RI-DNA), and of the ladders of fragments generated in total human DNA after digestion with XbaI and HaeIII (alpha satellite sequences). DNAs replicated in early, middle-early, middle-late and late S periods were labelled with BUdR or with [3H]thymidine. The efficiency of the cell synchronization procedure was confirmed by the transition from a high-GC to a high-AT average base composition of the DNA synthesized going from early to late S periods. By hybridizing EcoRI 340 bp repetitive fragments to BUdR-DNAs it was found that this family of sequences is replicated throughout the entire S period. Comparing fluorograph densitometric scans of [3H]DNAs to the scans of ethidium bromide patterns of total HL-60 DNA digested with XbaI and HaeIII, it was observed that DNA synthesized in different S periods is characterized by approximately the same ladder of fragments, while the intensity of each band may vary through the S phase; in particular, the XbaI 2.4 kb fragment becomes undetectable in late S.  相似文献   

11.
Regulation of mouse satellite DNA replication time.   总被引:14,自引:2,他引:12       下载免费PDF全文
S Selig  M Ariel  R Goitein  M Marcus    H Cedar 《The EMBO journal》1988,7(2):419-426
The satellite DNA sequences located near the centromeric regions of mouse chromosomes replicate very late in S in both fibroblast and lymphocyte cells and are heavily methylated at CpG residues. F9 teratocarcinoma cells, on the other hand, contain satellite sequences which are undermethylated and replicate much earlier in S. DNA methylation probably plays some role in the control of satellite replication time since 5-azacytidine treatment of RAG fibroblasts causes a dramatic temporal shift of replication to mid S. In contrast to similar changes accompanying the inactivation of the X-chromosome, early replication of satellite DNA is not associated with an increase in local chromosomal DNase I sensitivity. Fusion of F9 with mouse lymphocytes caused a dramatic early shift in the timing of the normally late replicating lymphocyte satellite heterochromatin, suggesting that trans-activating factors may be responsible for the regulation of replication timing.  相似文献   

12.
At a time in the life cycle when a large proportion of the oocytes of Acheta incorporate 3H-thymidine into an extrachromosomal DNA body, synthesis of a satellite or minor band DNA, the density of which is greater than main band DNA, is readily detected. Synthesis of the satellite DNA is not detectable in tissues, the cells of which do not have a DNA body, or in ovaries in which synthesis of extrachromosomal DNA by the oocytes is completed. The DNA body contains the amplified genes which code for ribosomal RNA. However, less than 1 percent of the satellite DNA, all of which appears to be amplified in the oocyte, is complementary to ribosomal 18S and 28S RNA. In situ hybridization demonstrates that non-ribosomal elements, like the ribosomal elements of the satellite DNA, are localized in the DNA body.Abbreviations used rRNA ribosomal RNA, includes 18S and 28S RNA - rDNA gene sequences complementary to rRNA - cRNA complementary RNA synthesized in vitro  相似文献   

13.
Heterochromatin is characteristically the last portion of the genome to be replicated. In polytene cells, heterochromatic sequences are underreplicated because S phase ends before replication of heterochromatin is completed. Truncated heterochromatic DNAs have been identified in polytene cells of Drosophila and may be the discontinuous molecules that form between fully replicated euchromatic and underreplicated heterochromatic regions of the chromosome. In this report, we characterize the temporal pattern of heterochromatic DNA truncation during development of polytene cells. Underreplication occurred during the first polytene S phase, yet DNA truncation, which was found within heterochromatic sequences of all four Drosophila chromosomes, did not occur until the second polytene S phase. DNA truncation was correlated with underreplication, since increasing the replication of satellite sequences with the cycE(1672) mutation caused decreased production of truncated DNAs. Finally, truncation of heterochromatic DNAs was neither quantitatively nor qualitatively affected by modifiers of position effect variegation including the Y chromosome, Su(var)205(2), parental origin, or temperature. We propose that heterochromatic satellite sequences present a barrier to DNA replication and that replication forks that transiently stall at such barriers in late S phase of diploid cells are left unresolved in the shortened S phase of polytene cells. DNA truncation then occurs in the second polytene S phase, when new replication forks extend to the position of forks left unresolved in the first polytene S phase.  相似文献   

14.
Male and female human placenta DNA was fractionated in an Ag+-Cs2SO4 density gradient. The different fractions along the gradient were analyzed by Hae III endonuclease digestion. Within the main band DNA on the light side a component having a Hae III digestion pattern similar to that of human satellite III DNA has been identified. This component which might be defined as a cryptic satellite accounts for at least 3% of the total human DNA and has a different position than human satellite III in Ag+-Cs2SO4.  相似文献   

15.
In dividing cells, each sequence replicates exactly once in each S-phase, but in cells with polytene chromosomes, some sequences may replicate more than once or fail to replicate during S-phase. Because of this differential replication, the control of replication in polytene cells must have some unusual features. Dennhöfer (1982a) has recently concluded that the total DNA content of the polytene cells of Drosophila salivary glands exactly doubles in each S-phase. This observation, along with previous studies demonstrating satellite underreplication in salivary gland cells, led us to consider the hypothesis that there is a doubling of DNA mechanism for the control of DNA replication in polytene cells. With this mechanism, a doubling of DNA content, rather than the replication of each sequence, would signal the end of a cycle of DNA replication. To test this hypothesis, we have reinvestigated the replication of several sequences (satellite, ribosomal, histone and telomere) in salivary gland cells using quantitative in situ hybridization. We find that underreplication of some sequences does occur. In addition we have repeated Dennhöfer's cytophotometric and labeling studies. In contrast to Dennhöfer, we find that the total DNA contents of nonreplicating nuclei do reflect this partial replication, in accord with Rudkin's (1969) result. We conclude that DNA replication in polytene cells is controlled by modifications of the mechanism operating in dividing cells, where control is sequence autonomous, and not by a doubling of DNA mechanism. — In situ hybridization to unbroken salivary gland nuclei reveals the distribution of specific sequences. As expected, satellite, histone and 5S sequences are usually in a single cluster. This rules out the possibility that sequences known to be underreplicated in chromosomal DNA exist as extrachromosomal copies. Telomere sequences are grouped into two to six clusters, as if the chromosome ends are partially but not completely paired in salivary gland nuclei.  相似文献   

16.
Long DNA molecules from a cucumber satellite, the cucumber main band, mung bean, and Chinese hamster ovary (CHO) were digested with mung bean nuclease I, which was used as a probe for high AT regions. The digests were viewed under the electron microscope, and the distribution of sizes for the fragments of nuclease-treated plant DNA showed that the main band cucumber and the mung bean have regions along their genomes spaced at approximately 0.3 to 0.4 μ that are sensitive to the nuclease. The satellite from the cucumber contains these sites at intervals generally of 0.1 μ or less, whereas CHO DNA has these regions at intervals of 0.05 to 1.40 μ in length. The long DNA from the main band of the cucumber and the CHO were also partially melted in formamide at 37°C to denature preferentially the regions along the DNA molecules that are rich in AT. Measurements of the distances from the center of each loop to the center of the adjacent loops showed that these distances for the main band cucumber DNA tended to occur at approximately every 0.4 μ, whereas the corresponding distances for the Chinese hamster DNA were less regular, occurring every 0.1 to 1.0 μ.  相似文献   

17.
Interspersion of mouse satellite deoxyribonucleic acid sequences   总被引:2,自引:0,他引:2  
P J Stambrook 《Biochemistry》1981,20(15):4393-4398
DNA sequences with homology to the major (A + T)-rich mouse satellite component were localized in CsCl gradients by hybridization with a labeled satellite cRNA probe. Although, as expected, most of the hybridization was to DNA in the satellite-rich shoulder, substantial radioactive cRNA hybridized with DNA from denser regions of the gradient. Further examination revealed that hybridization to main-band DNA was not due to physical trapping of satellite DNA in the gradient, and melting experiments argue that the associated radioactivity was due to true RNA/DNA hybridization. Nearest-neighbor analysis of hybridized [alpha-32P]CTP-labeled l-strand cRNA indicates that hybridization to main-band DNA is by the satellite cRNA and not a contaminant. Together, these data argue that mouse satellite-like sequences are interspersed within the main-band fraction of DNA. For the support of this contention, total mouse DNA, purified main-band DNA, and purified satellite DNA were digested with EcoRI, sedimented in a sucrose gradient, and hybridized with labeled satellite cRNA. Mouse satellite DNA is not cleaved with EcoRI, so that purified EcoRI-digested satellite DNA sediments as a high molecular weight component. When total mouse DNA is digested with EcoRI, the majority of satellite-like sequences remain as high molecular weight DNA; however, significant amounts of satellite-like sequences sediment with the bulk of the lower molecular weight digested DNA, lending further credence to the argument that satellite-like sequences are interspersed with main-band DNA.  相似文献   

18.
Bovine papillomavirus (BPV) DNA has been reported to restrict its own replication and that of the lytic simian virus 40 (SV40) origin to one initiation event per molecule per S phase, which suggests BPV DNA replication as a model for cellular chromosome replication. Suppression of the SV40 origin required two cis-acting BPV sequences (NCOR-1 and -2) and one trans-acting BPV protein. The results presented in this paper confirm the presence of two NCOR sequences in the BPV genome that can suppress polyomavirus (PyV) as well as SV40 origin-dependent DNA replication as much as 40-fold. However, in contrast to results of previous studies on SV40, most of the suppression of the PyV origin was due to NCOR-1, a 512-bp sequence that functioned independently of distance or orientation with respect to the PyV origin and that was not required for BPV DNA replication. Moreover, NCOR-1 alone or together with NCOR-2 did not restrict the ability of the PyV ori to reinitiate replication within a single S phase and did not require any BPV protein to exert suppression. Furthermore, NCOR-1 did not suppress BPV origin-dependent DNA replication except in the presence of PyV large tumor antigen (T-ag). Since NCOR-1 suppression of PyV origin activity also varied with T-ag concentration, suppression of origins by NCOR sequences appeared to require papovavirus T-ag. Therefore, it is unlikely that NCOR sequences are involved in regulating BPV DNA replication. When these results are taken together with those from other laboratories, BPV appears to be a slowly replicating version of papovaviruses rather than a model for origins of DNA replication in eukaryotic cell chromosomes.  相似文献   

19.
Ribosomal DNA in spores of Physarum polycephalum   总被引:2,自引:0,他引:2  
DNA was isolated from plasmodia, spores and newly hatched amoebae of the slime mould Physarum polycephalum. The DNA preparations were fractionated in CsCl gradients and each fraction hybridised to combined 19 S + 26 S rRNA. In all three DNA preparations hybridisation was found to be limited to satellite DNA (rho = 1.714 g/cm3) and at saturation was found to reach a level of 0.16--0.18 % of total DNA. The main band of nuclear DNA (rho = 1.702 g/cm3) did not hybridise appreciably. Further experiments using analytical CsCl gradients revealed that the ratio of satellite to main band DNA was similar in all three preparations. It is concluded that the genes for ribosomal RNA are equally reiterated in spores, hatching amoebae and in plasmodia. They appear to be similarly organised in all stages of the life cycle examined so far.  相似文献   

20.
Mouse L-cell DNA radioactively labeled in the 5-methylcytosine (5-MeC) residue was fractionated into satellite and main band DNA. Satellite DNA was found to contain about four times the molar concentration of 5-MeC than the main band DNA. Based on the known 5-MeC content of total L-cell DNA it was calculated that satellite DNA contains 3.5 – 4.6% 5-MeC. Both DNA fractions were depurinated and the pyrimidine oligonucleotides released separated by ionophoresis-homochromatography. In satellite DNA 5-MeC is distributed non-randomly. About 40% of the total 5-MeC is present in the sequence Pu - 5-MeC - Pu. The remainder occurs in the oligonucleotides CT, CT3, C2T4, C2T5 and C3T5 only. The distribution of 5-MeC in main band DNA differs from that in satellite DNA indicating that two different fractions of the same nuclear DNA are methylated in different sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号