首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater lakes are biologically sensitive to changes in the surrounding environment and the impacts that such changes have on their water quality are of considerable ecological, recreational and economic importance. In this study the phytoplankton community model, PROTECH, was used to experiment with the effects of elevated temperatures and increased nutrient load on phytoplankton succession and productivity. The response of a phytoplankton community to combined incremental changes in these drivers was analysed, in order to elucidate the resulting ecological changes. Annual mean phytoplankton biomass increased with increases in temperature and nutrient loading, although the latter had the larger effect. The phenology of the dominant phytoplankton taxa changed with increasing water temperature; the three spring blooming species all peaked earlier in the year. The simulated summer bloom of Anabaena became earlier in the year and the Chlorella bloom later. The increased phytoplankton biomass was largely dominated by the cyanobacterium Anabaena, which was especially prevalent during the summer bloom. This resulted in a progressive loss of phytoplankton biodiversity with increasing water temperature and nutrient supply. Model experimentation showed that whilst both factors greatly affected the community, the changes to nutrient loading generally had the greater effect and that at low nutrient levels the effect of water temperature change was reduced considerably. Finally, the model predicted that cyanobacteria have the potential to dominate the phytoplankton community, with clear consequences for water quality, and that this dominance was at its greatest when high water temperatures were combined with high nutrient loads.  相似文献   

2.
We determined the limiting nutrient of phytoplankton in 21 lakes and ponds in Wapusk National Park, Canada, using nutrient enrichment bioassays to assess the response of natural phytoplankton communities to nitrogen and phosphorus additions. The goal was to determine whether these Subarctic lakes and ponds were nutrient (N or P) limited, and to improve the ability to predict future impacts of increased nutrient loading associated with climate change. We found that 38% of lakes were not limited by nitrogen or phosphorus, 26% were co-limited by N and P, 26% were P-limited and 13% were N-limited. TN/TP, DIN/TP and NO3 /TP ratios from each lake were compared to the Redfield ratio to predict the limiting nutrient; however, these predictors only agreed with 29% of the bioassay results, suggesting that nutrient ratios do not provide a true measure of nutrient limitation within this region. The N-limited lakes had significantly different phytoplankton community composition with more chrysophytes and Anabaena sp. compared to all other lakes. N and P limitation of phytoplankton communities within Wapusk National Park lakes and ponds suggests that increased phytoplankton biomass may result in response to increased nutrient loading associated with environmental change.  相似文献   

3.
A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km2), but not in small, warm lakes (annual air temperature more than 0.9–1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091–2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike–brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity.  相似文献   

4.
External nutrient loading was reduced over the past decades as a measure for improving the water quality of eutrophic lakes in western Europe, and has since been accelerated by the adoption of the European Water Framework Directive (WFD) in 2000 (EC, 2000). A variety of eutrophication-related metrics have indicated that the response of biological communities to this decreased nutrient loading has been diverse. Phytoplankton, a major component of the pelagic community, often responded rapidly, whereas a significant delay was observed for submerged macrophytes colonizing littoral areas. In this study we tested whether assessment methods developed for phytoplankton and macrophytes in lakes during Germany's implementation of the WFD reflect this differential response. An assessment of 263 German lakes confirmed that a lower ecological state was recorded when based on the biological quality element (BQE) for macrophytes than the BQE for phytoplankton during the investigated period (2003–2012). On average, lakes had a moderate ecological status for both phytoplankton and macrophyte BQEs, but differences of up to three classes were observed in single cases. Long-term data were available for five lowland lakes subject to strong reductions in phosphorus loading. Their phytoplankton-based assessments indicated a constant improvement of the ecological status in parallel to decreasing water phosphorus concentrations. In contrast, macrophyte-based assessments indicated a 10–20 year delay in their ecological recovery following nutrient load reduction. This delay was confirmed by detailed data on the temporal development of macrophyte species diversity and maximum colonization depths of two lakes after nutrient load reduction. We conclude that the available WFD assessment methods for phytoplankton and macrophyte BQEs are suitable to track the differential response of pelagic and littoral areas to nutrient load reductions in German lakes.  相似文献   

5.
1. Using a palaeolimnological approach in shallow lakes, we quantified the species richness responses of diatoms and Cladocera to phosphorus enrichment. We also examined differences in species richness responses between littoral and pelagic assemblages of our focal communities. To address both spatial and temporal relationships, our study includes an analysis of both surface sediments from 40 lakes and of a lake sediment record spanning c. 120 years. The objective of our study was to determine whether similar species richness patterns occurred across trophic levels, as well as along spatial and temporal gradients. 2. We found that both diatom and Cladocera species richness estimates significantly declined with increasing phosphorus across space and through time. When the assemblages were subdivided according to known habitat preferences, littoral biodiversity maintained a negative trend, whereas pelagic species richness tended to show no relationship with phosphorus. 3. Negative productivity–diversity patterns have been observed across almost all palaeolimnological studies that span large productivity gradients. This congruence in patterns is most likely due to the similarity in data collection methods and in focal communities studied. The contrasting responses between littoral and pelagic assemblages may be explained by the differences in physical habitat and the pool of taxa in each of these environments. Consistent with the literature, we found statistical support for the idea that littoral diversity declines could be explained by an interaction between macrophytes and nutrients along strong trophic gradients. The general lack of a diversity response in our pelagic assemblages could be attributable to the limited pool of subfossil taxa. The response of the pelagic diatom could also be related to their broad range of nutrient tolerances. 4. The observed negative response of species richness to phosphorus enrichment, particularly in the littoral assemblages, has implications for ecosystems functioning because communities with reduced biodiversity often are less resilient to anthropogenic change.  相似文献   

6.
7.
Increasing evidence shows that anthropogenic climate change is affecting biodiversity. Reducing or stabilizing greenhouse gas emissions may slow global warming, but past emissions will continue to contribute to further unavoidable warming for more than a century. With obvious signs of difficulties in achieving effective mitigation worldwide in the short term at least, sound scientific predictions of future impacts on biodiversity will be required to guide conservation planning and adaptation. This is especially true in Mediterranean type ecosystems that are projected to be among the most significantly affected by anthropogenic climate change, and show the highest levels of confidence in rainfall projections. Multiple methods are available for projecting the consequences of climate change on the main unit of interest – the species – with each method having strengths and weaknesses. Species distribution models (SDMs) are increasingly applied for forecasting climate change impacts on species geographic ranges. Aggregation of models for different species allows inferences of impacts on biodiversity, though excluding the effects of species interactions. The modelling approach is based on several further assumptions and projections and should be treated cautiously. In the absence of comparable approaches that address large numbers of species, SDMs remain valuable in estimating the vulnerability of species. In this review we discuss the application of SDMs in predicting the impacts of climate change on biodiversity with special reference to the species‐rich South West Australian Floristic Region and South African Cape Floristic Region. We discuss the advantages and challenges in applying SDMs in biodiverse regions with high levels of endemicity, and how a similar biogeographical history in both regions may assist us in understanding their vulnerability to climate change. We suggest how the process of predicting the impacts of climate change on biodiversity with SDMs can be improved and emphasize the role of field monitoring and experiments in validating the predictions of SDMs.  相似文献   

8.
Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context‐dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non‐native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.  相似文献   

9.
Climate change and invasive species are two stressors that should have large impacts on native species in aquatic and terrestrial ecosystems. We quantify and integrate the effects of climate change and the establishment of an invasive species (smallmouth bass Micropterus dolomieu ) on native lake trout Salvelinus namaycush populations. We assembled a dataset of almost 22 000 Canadian lakes that contained information on fish communities, lake morphologies, and geography. We examined the pelagic-benthic and littoral forage fish community available to lake trout populations across three lake size classes in these aquatic ecosystems. Due to the decreased presence of alternate prey resources, lake trout populations residing in smaller lakes are more vulnerable to the effects of smallmouth bass establishment. A detailed spatially and temporally explicit approach to assess smallmouth bass invasion risk in Ontario lakes suggests that the number of Ontario lakes with vulnerable lake trout populations could increase from 118 (~1%) to 1612 (~20%) by 2050 following projected climate warming. In addition, we identified nearly 9700 lake trout populations in Canada threatened by 2100, by the potential range expansion of smallmouth bass. Our study provides an integration of two major stressors of ecosystems, namely climate change and invasive species, by considering climate-change scenarios, dispersal rates of invasive species, and inter-specific biotic interactions.  相似文献   

10.
Boreal lakes undergo broad-scale environmental change over time, but biodiversity responses to these changes, particularly at macroecological scales, are not well known. We studied long-term trends (1992–2009) of environmental variables and assessed α, β, and γ diversity responses of phytoplankton and littoral invertebrates to these changes. Diversity was assessed based on taxon richness (“richness”) and the exponentiated Shannon entropy (“diversity”). Almost all environmental variables underwent significant monotonic change over time, indicating mainly decreasing acidification, water clarity and nutrient concentrations in the lakes. These variables explained about 54 and 38 % of variance in regression models of invertebrates and phytoplankton, respectively. Despite this, most diversity-related variables fluctuated around a long-term mean. Only α and γ richness and diversity of invertebrates increased monotonically through time, and these patterns correlated significantly with local and regional abundances. Results suggest that biodiversity in boreal lakes is currently stable, with no evidence of regional biotic homogenization or local diversity loss. Results also show that richness trends between phytoplankton and invertebrates were widely uncorrelated, and the same was found for diversity trends. Also, within each taxonomic group, temporal patterns of richness and diversity were largely uncorrelated with each other. From an applied perspective, this suggest that long-term trends of biodiversity in boreal lakes at a macroecological scale cannot be accurately assessed without multiple lines of evidence, i.e. through the use of multiple taxa and diversity-related variables in the analyses.  相似文献   

11.
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.  相似文献   

12.
Climate change is expected to cause significant changes to the hydrology of lakes, reservoirs and other wetlands. In particular, there will be an increase in the level of disturbance produced by water-level fluctuations. This may have adverse consequences for biodiversity, water quality and human uses. Strategies to cope with these climate change impacts are currently poorly developed. This article proposes the use of Grime’s CSR theory as a framework to understand the potential impacts of climate change on shoreline vegetation. It is also used to recommend a series of practical management techniques that will contribute to the adaptation capacity of shoreline ecosystems. Four key areas are highlighted: hydrological controls, substrate conditions, shoreline topography and vegetation establishment.  相似文献   

13.
Climate change will have substantial impacts on biodiversity, particularly for aquatic species. Warming temperatures and changing weather patterns will also remobilize and modify chemical partitioning. Holding millions of cubic yards of sediments contaminated with persistent legacy chemicals such as polychlorinated biphenyls (PCBs) and dioxins, the Laurentian Great Lakes are a laboratory for observing interactions between biological and chemical responses to climate change. They provide a wide range of habitat to a variety of species, from littoral forage fish to deep‐water predators. In this paper, we couple bioenergetic and bioaccumulation models to investigate the biological and chemical effects of climate change in the Great Lakes. We consider three species: round goby, a warm‐water invasive forage fish; mottled sculpin, a cool‐water native forage fish; and lake trout, a cold‐water native predator. Using our coupled models, we calculate the accumulation of a representative persistent chemical, PCB‐77, under four climate scenarios for Lake Erie and Lake Superior. Predator–prey (lake trout–round goby) interactions and food availability (high–low) are incorporated into our simulations. For cool‐ to cold‐water species (sculpin, lake trout) we find that warm temperatures limit growth. For warm‐water species (round goby) cold temperatures limit growth. The impact of climate warming on growth depends on the winter lows as well as the summer highs of the scenario, in combination with the species' critical upper and lower thermal limits. We find conditions for high growth and consumption rates generally lead to high bioaccumulation. However, this can be confounded by predator–prey dynamics, as mismatches in the temperature preferences of predator and prey can lead to mismatches in relative growth and uptake rates. As predator–prey dynamics are expected to undergo substantial shifts with changing climate, these relative thermal sensitivities will be key in determining the implications of climate change for bioaccumulation, particularly in top predator species.  相似文献   

14.
Global average surface temperatures are expected to rise by about 1.4–5.8°C from the present until the year 2100. This temperature increase will affect all ecosystems on earth. For shallow lakes—which can be either in a clear water or a turbid state—this climate change will expectedly negatively affect water transparency though the prediction is far from conclusive and experimental investigations elucidating the potential climatic effects on shallow lakes are still rare. The aim of this study was to further shape and sharpens hypotheses on the impact of climate change on shallow lakes by applying an existing and well-calibrated ecosystem model, PCLake. We focused on asymptotic model behaviour for a range of temperature and loading scenarios in a factorial design. We conclude that climate change will likely lead to decreased critical nutrient loadings. Combined with an expected increase in the external nutrient loading, this will increase the probability of a shift from a clear to a turbid state. As the model predicts a higher summer chlorophyll-a concentration, a stronger dominance of cyanobacteria during summer and a reduced zooplankton abundance due to climate change, the turbid state itself is likely to become even more severe.  相似文献   

15.
16.
Lakes are common features of alpine landscapes, and the attention given to alpine lakes has increased recently in response to increased recognition of the important role that these freshwaters play as sensible indicators of climate change. Despite this general research interest, there is nevertheless a general lack of information about zoobenthos especially of lakes in the Alps, and only few published data are available, which has made it nearly impossible to draw general conclusions in respect to benthic community structure, profundal and/or littoral food webs. This paper aims to explore the relationships between main environmental/catchment properties of 55 lakes and their littoral benthic fauna across three regions of the Alps. We provide updated information on relative abundance, species richness, distribution and ecology of macroinvertebrates which occur and are typical in the littoral of high-mountain lakes of the Alps. These lakes were located in the Lago-Maggiore Watershed (Italy and Switzerland), in South Tyrol (Italy) and in North/East Tyrol (Austria), between 1840 and 2796 m a.s.l., in catchments undisturbed by human activities. As the studied lakes are situated above the tree line, they were characterised by low nutrient levels indicating an oligotrophic status. Lake water chemistry corresponded closely to the geo-lithology of the catchment and some parameters (especially nutrient concentrations) differed between the regions. The macroinvertebrates were dominated by insects which to a high degree were chironomid larvae and pupae. Other insect orders were typical cold stenotherm species of Ephemeroptera, Plecoptera and Trichoptera. Non-insect macroinvertebrates contributed to the 144 taxa found. Other than lake size and catchment area, the faunal parameters exhibited a clearer pattern along altitude. Macroinvertebrates per sample increased with higher elevation, reached their maximum in lakes between 2400 and 2600 m a.s.l., but decreased strongly above 2600 m. The altitudinal pattern of species richness and Shannon diversity resembled each other being highest between 2001 and 2200 m a.s.l., but decreased when going lower and higher, respectively. Various patterns and trends along altitude were also evident when individual groups were analysed within the individual sampling regions. The somewhat conflicting trends of various biocoenotic indices let assume that factors other than altitude are also responsible for the structure of faunal assemblages in the littoral of alpine lakes. Six variables (“bare rocks” and “nitrate”, “alkalinity”, “ammonia” and “peat bog”) were selected by the CCA analysis where these three groups of lakes were identified: (1) lakes with a higher alkalinity (higher pH, conductivity, ion concentration), a higher relative vegetation cover (compared to the “bare rocks” on the opposite side) and lower nitrate levels; (2) lakes with a higher portion of “bare rocks” in their catchments and higher nitrate levels; and (3) a smaller group of lakes with higher ammonia levels and a boggy environment. Geographical patterns seemed to have weak effects on the presence of taxa while catchment properties had evident impacts on macroinvertebrate communities in these lakes. In this way, the present study contributes to the overall understanding of environmental settings and effects on high mountain lake ecosystems and assists in refining research and conservation strategies for an important landscape aspect in the Alps.  相似文献   

17.
The aim of this study was to draw a general picture of the phytoplankton community in peri-Alpine lakes, including for the first time a broad data set of six deep peri-Alpine lakes, belonging to the same geographical region. The objective was to define the main key drivers that influence the phytoplankton community composition in this particular vulnerable region, for which the impacts of climate change have been demonstrated to be stronger than on a global average. The phytoplankton was investigated with a particular focus on cyanobacteria and using a classification approach based on morpho-functional groups. We hypothesized that phytoplankton in peri-Alpine lakes is mainly driven by nutrient loads as well as by water temperatures, variables that are strongly influenced by climate change and eutrophication. Though different phytoplankton configurations among lakes were partly due to their geographical (altitude) position, assemblages were mostly linked to temperature and nutrients. Furthermore, the results confirmed the significant role of the spring fertilization on the seasonal phytoplankton development. Cyanobacteria were related to the increasing annual average of air and water temperature gradient and therefore might become more important under future warming scenario. Air temperatures have a significant impact on water temperature in the uppermost meters of the water column, with a stronger influence on warmer lakes.  相似文献   

18.
孙军  薛冰 《生物多样性》2016,24(7):739-222
理解全球气候变化对地球生态系统的影响是全世界广泛关注的问题, 而相比于陆地生态系统, 海洋生态系统对全球气候变化更为敏感。全球气候变化对海洋的影响主要表现在海洋暖化、海洋酸化、大洋环流系统的改变、海平面上升、紫外线辐射增强等方面。浮游植物是海洋生态系统最重要的初级生产者, 同时对海洋碳循环起到举足轻重的作用, 其对全球气候变化的响应主要体现在物种分布、初级生产力、群落演替、生物气候学等方面。具体表现在以下方面: 暖水种的分布范围在扩大, 冷水种分布范围在缩小; 浮游植物全球初级生产力降低; 浮游植物群落会向细胞体积更小的物种占优势的方向转变; 浮游植物水华发生的时间提前、强度增强; 一些有害物种水华的发生频率也会增加; 海洋表层海水的酸化会影响浮游植物特别是钙化类群的生长和群落多样性; 紫外辐射增强对浮游植物的生长起到抑制作用; 厄尔尼诺、拉尼娜、降水量的增加通常抑制浮游植物生长。浮游植物生长和分布的变化会体现在多样性的各个层面上。对于浮游植物在全球变化各种驱动因子下的生理生态学和长周期变动观测等是今后研究的重要方向, 也将为理解全球变化下的浮游植物-多样性-生态系统响应与反馈机制提供基本信息。  相似文献   

19.
20.
草藻型稳态转换对湖泊微生物结构及其碳循环功能的影响   总被引:9,自引:0,他引:9  
湖泊是地球表层系统中水、土、气等各个圈层相互作用的联结点,对区域物质如碳等元素循环具有重要影响.微生物是湖泊等水生态系统中的重要组成部分,是湖泊等生态系统中碳等元素物质循环的主要驱动者,是深入了解湖泊碳循环过程的关键.受人类活动等影响,湖泊生态系统,尤其是浅水湖泊生态系统往往表现出以高等水生植物(草型)为主要初级生产者的清水稳定态和以浮游藻类(藻型)为主要初级生产者的浊水稳定态,而随着湖泊营养负荷和湖泊环境条件的变化,这两个不同的稳定态之间可以发生转换或者剧变,这种剧变不仅影响湖泊生态系统中的微生物结构,而且对湖泊中有机碳的形成、循环过程及其微生物驱动机制产生重大影响.本文重点就湖泊生态系统中有机碳的转换与微生物关系以及草藻型稳定态的转换对微生物结构及其碳循环功能的影响等进行综述,进一步分析其中的关键科学问题,以期为深入了解湖泊生态系统中碳等元素循环的微生物驱动过程与机制提供帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号