首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflamed tissues generate reactive nitrogen oxide species (RNOx), such as peroxynitrite (ONO2)and nitryl chloride (NO2Cl), which lead to formation of nitrated DNA and protein adducts, including 8-nitroguanine (8NG), 8-nitroxanthine (8NX), and 3-nitrotyrosine (3NT). Once formed, the two nitrated DNA adducts are not stable in DNA and undergo spontaneous depurination. Nitration of protein tyrosine leads to inactivation of protein functions and 3NT has been detected in various disease states. We herein report that reduction of these nitro adducts to their corresponding amino analogues can be catalyzed by lipoyl dehydrogenases (EC 1.8.1.4) from Clostridium kluyveri (ck) and from porcine heart (ph) using NAD(P)H as the cofactor. We also found that dihydrolipoic acid (DHLA) and ubiquinol can be used as effective cofactors for reduction of 8NG, 8NX, and 3NT by these lipoyl dehydrogenases. The reduction efficiency of the mammalian enzyme is higher than the bacterial isozyme. The preference of cofactors by both lipoyl dehydrogenases is DHLA>NAD(P)H>ubiquinol. In all the systems examined, the nitrated purines are reduced to a greater extent than 3NT under the same conditions. We also demonstrate that this lipoyl dehydrogenase/antioxidant system is effective in reducing nitrated purine on NO2Cl-treated double stranded calf thymus DNA, and thus decreases apurinic site formation. The nitroreductase activity for lipoyl dehydrogenase might represent a possible metabolic pathway to reverse the process of biological nitration.  相似文献   

2.
DNA damages by reactive nitrogen oxide species may contribute to the multistage carcinogenesis processes associated with chronic infections and inflammation. The nitrated DNA adducts 8-nitroguanine (8NG) and 8-nitroxanthine (8NX) have been shown to derive from these reactive nitrogen oxide species, but they are not stable in DNA since they undergo spontaneous depurination. We herein report that hemin and hemoproteins, including hemoglobin and cytochrome c, mediate reduction of 8NG and 8NX to their corresponding amino analogues in the presence of reducing agents under physiologically relevant conditions. This reaction is believed to involve the reduced heme moiety produced from the reduction of oxidized hemoglobin or cytochrome c by reducing agents. The combination of hemoglobin and dihydrolipoic acid generated the reduced products in high yields. Ascorbate, quercetin, and glutathione are also capable of reducing these nitrated DNA adducts. The hemoglobin macromolecule reduces 8NG and 8NX formed in nitryl chloride-treated calf thymus DNA, as evidenced by the formation of the amino adducts using reversed-phase HPLC with photodiode array detection. Hemin is more efficient than equal molar of heme on hemoglobin in reducing 8NG-containing DNA, indicating the role of protein in impeding the reaction. Furthermore, we also show that the reduction product 8-aminoguanine is persistent on DNA. These findings suggest that reduction of nitrated DNA by the heme/antioxidant system might represent a possible in vivo pathway to modify DNA nitration.  相似文献   

3.
We have developed an analytical method to quantitate urinary 8-nitroguanine, a product of nitrative nucleic acid damage caused by reactive nitrogen species such as peroxynitrite and nitrogen dioxide. 8-Nitroguanine was purified from human urine using immunoaffinity columns with an anti-8-nitroguanine antibody, followed by quantitation by high-performance liquid chromatography-electrochemical detection. Four sequential electrodes were used to (a) oxidize interfering compounds (+250 mV), (b) reduce nitrated bases (two online electrodes at -1000 mV), and (c) quantitate reduced derivatives (+150 mV). Using this system 8-nitroxanthine can also be detected, with the detection limits being 25 and 50 fmol/injection for 8-nitroguanine and 8-nitroxanthine, respectively. The method was used to analyze both adducts in the urine of smokers (n=12) and nonsmokers (n=17). We found that smokers excrete more 8-nitroguanine [median, 6.1 fmol/mg creatinine; interquartile range (IQR), 23.8] than nonsmokers (0; IQR, 0.90) (p=0.018), and although 8-nitroxanthine was detected in human urine, its level was not related to smoking status. This is the first report to show that 8-nitroguanine is present in human urine and the methodology developed can be used to study the pathogenic roles of this adduct in the etiology of cancers associated with cigarette smoking and inflammation.  相似文献   

4.
Reactive nitrogen species, such as peroxynitrite, nitrogen oxides and nitryl chloride, have been implicated as a cause of diverse pathophysiological conditions, including inflammation, neurodegenerative and cardiovascular diseases and cancer. We previously reported that 8-nitroguanine is formed by reactions of guanine or calf-thymus DNA with peroxynitrite in vitro. In the present study, we have studied the formation of 8-nitroguanosine and 8-oxo-7,8-dihydroguanosine in reactions of calf-liver RNA with various reactive nitrogen species. 8-Nitroguanosine in RNA was found to be much more stable than 8-nitro-2' -deoxyguanosine in DNA, which rapidly depurinates to release 8-nitroguanine. Both 8-nitroguanosine and 8-oxo-7,8-dihydroguanosine were formed in calf-liver RNA following exposure to various reactive nitrogen species, such as synthetic peroxynitrite. They were also formed in RNA by reactive species formed from nitric oxide and superoxide anion generated concomitantly from 3-morpholino-sydnonimine (SIN-1) and those formed with myeloperoxidase or horseradish peroxidase in the presence of nitrite and hydrogen peroxide. 8-Nitroguanosine was detected by HPLC with an electrochemical detector in enzymatic hydrolyzates of RNA isolated from human lung carcinoma cells incubated with synthetic peroxynitrite. Our results indicate that 8-nitroguanosine in cellular RNA could be measured as a marker of damage caused by endogenous reactive nitrogen species in tissues and cells.  相似文献   

5.
Nucleic acid damage by reactive nitrogen and oxygen species may contribute to the carcinogenesis associated with chronic infection and inflammation. We examined 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation and nitric oxide (NO) production in hamsters infected with Opisthorchis viverrini (OV). Formation of 8-nitroguanine was assessed immunohistochemically with an antibody specific for 8-nitroguanine. 8-nitroguanine formation was found mainly in the cytoplasm and slightly in the nucleus of inflammatory cells and epithelial lining of bile duct at inflammatory areas in the liver. 8-nitroguanine immunoreactivity reached the highest intensity on day 30. A time profile of 8-nitroguanine formation was closely associated with that of plasma nitrate/nitrite. HPLC with an electrochemical detector revealed that the amount of 8-oxodG in the liver reached the maximal level on day 21. The mechanisms of 8-oxodG and 8-nitroguanine formation via O2*- and NO production triggered by OV infection were discussed in relation to cholangiocarcinoma development.  相似文献   

6.
Helicobacter pylori infection causes chronic inflammation, which can lead to gastric carcinoma. A double immunofluorescence labeling study demonstrated that the level of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) apparent in gastric gland epithelium was significantly higher in gastritis patients with H. pylori infection than in those without infection. A significant accumulation of proliferating cell nuclear antigen, a prognostic factor for gastric cancer, was observed in gastric gland epithelial cells in patients with H. pylori infection as compared to those without infection, and its accumulation was closely correlated with the formation of 8-nitroguanine and 8-oxodG. These results suggest that nitrosative and oxidative DNA damage in gastric epithelial cells and their proliferation by H. pylori infection may lead to gastric carcinoma. 8-Nitroguanine could be not only a promising biomarker for inflammation but also a useful indicator of the risk of gastric cancer development in response to chronic H. pylori infection.  相似文献   

7.
Elevated levels of reactive nitrogen species (RNS) such as peroxynitrite have been implicated in over 50 diverse human diseases as measured by the formation of the RNS biomarker 3-nitrotyrosine. Recently, an additional RNS was postulated to contribute to 3-nitrotyrosine formation in vivo; nitryl chloride formed from the reaction of nitrite and neutrophil myeloperoxidase-derived hypochlorous acid (HOCl). Whether nitryl chloride nitrates intracellular protein is unknown. Therefore, we exposed intact human HepG2 and SW1353 cells or cell lysates to HOCl and nitrite and examined each for 3-nitrotyrosine formation by: 1) Western blotting, 2) using a commercial 3-nitrotyrosine enzyme-linked immunosorbent assay kit, 3) flow cytometric analysis, and 4) confocal microscopic analysis. With each approach, no significant 3-nitrotyrosine formation was observed in either whole cells or cell lysates. However, substantial 3-nitrotyrosine was observed when peroxynitrite (100 microm) was added to cells or cell lysates. These data suggest that nitryl chloride formed from the reaction of nitrite with HOCl does not contribute to the elevated levels of 3-nitrotyrosine observed in human diseases.  相似文献   

8.
Arachidonate 8-lipoxygenase was identified in phorbol ester induced mouse skin. We expressed the enzyme in an Escherichia coli system using pET-15b carrying an N-terminal histidine-tag sequence. The enzyme, purified by nickel-nitrilotriacetate affinity chromatography, showed specific activity of about 0.1 micromol/min/mg of protein with arachidonic acid as a substrate. When metabolites of arachidonic acid were reduced and analyzed by reverse-phase HPLC, 8-hydroxy derivative was a major product as measured by absorbance at 235 nm. In addition, three polar compounds (I, II, and III) were detected by measuring absorbance at 270 nm. These compounds were also produced when the enzyme was incubated with 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid. Neither heat-inactivated enzyme nor mutated enzyme produced these compounds, suggesting that they are enzymatically generated. Ultraviolet spectra of these compounds showed typical triplet peaks around 270 nm, indicating that they have a triene structure. Molecular weight of these compounds was determined to be 336 by liquid chromatography-mass spectrometry, indicating that they carry two hydroxyl groups. Compounds I and III were generated even under anaerobic condition, indicating that oxygenation reaction was not required for their generation from 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid. By analogy to the reactions of 5-lipoxygenase pathway where leukotriene A4 is generated, it is suggested that 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid is converted by the 8-lipoxygenase to 8,9-epoxyeicosa-5,10,12,14-tetraenoic acid which degrades to compounds I and III by non-enzymatic reaction. In contrast, compound II was not generated under anaerobic condition, indicating that it was produced by oxygenation reaction. Taken together, 8-lipoxygenase catalyzes both dehydration reaction to yield 8,9-epoxy derivative and oxygenation reaction presumably at 15-position of 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid.  相似文献   

9.
The interaction between peroxynitrite and dopamine and the inhibition of this reaction by plant-derived antioxidants have been investigated. Peroxynitrite promoted the oxidation of dopamine to 6-hydroxyindole-5-one as characterised by HPLC and photodiode array spectra, akin to the products of the tyrosinase-dopamine reaction, but no evidence of dopamine nitration was obtained. Although peroxynitrite did not cause nitration of dopamine in vitro, the catecholamine is capable of inhibiting the formation of 3-nitrotyrosine from peroxynitrite-mediated nitration of tyrosine. The plant-derived phenolic compounds, caffeic acid and catechin, inhibited peroxynitrite-mediated oxidation of dopamine. This effect is attributed to the ability of catechol-containing antioxidants to reduce peroxynitrite through electron donation, resulting in their oxidation to the corresponding o-quinones. The antioxidant effect of caffeic acid and catechin was comparable to that of the endogenous antioxidant, glutathione. In contrast, the structurally related monohydroxylated hydroxycinnamates, p-coumaric acid and ferulic acid, which inhibit tyrosine nitration through a mechanism of competitive nitration, did not inhibit peroxynitrite-induced dopamine oxidation. The findings of the present study suggest that certain plant-derived phenolics can inhibit dopamine oxidation.  相似文献   

10.
Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.  相似文献   

11.
Doll C  Bell AF  Power N  Tonge PJ  Tipton PA 《Biochemistry》2005,44(34):11440-11446
The binding of the inhibitor 8-nitroxanthine to urate oxidase has been investigated by Raman and UV-visible absorption spectroscopy. The absorption maximum of 8-nitroxanthine shifts from 380 to 400 nm upon binding to the enzyme, demonstrating that the electronic structure of the ligand is perturbed. It has been proposed that oxidation of the substrate urate by urate oxidase is facilitated by formation of the substrate dianion at the enzyme active site, and Raman spectra of urate oxidase-bound 8-nitroxanthine suggest that both the dianionic and monoanionic forms of the ligand are bound to the enzyme under conditions where in solution the monoanion is present exclusively. The C4-C5 stretching frequency appears as a relatively isolated vibrational mode in 8-nitroxanthine whose frequency shifts according to the protonation state of the purine ring. Identification of the C4-C5 stretching mode was confirmed using [4-(13)C]-8-nitroxanthine and ab initio calculation of the vibrational modes. Two peaks corresponding to the C4-C5 stretching mode were evident in spectra of enzyme-bound 8-nitroxanthine, at 1541 and 1486 cm(-)(1). The higher frequency peak was assigned to monoanionic 8-nitroxanthine, and the low-frequency peak was assigned to dianionic 8-nitroxanthine. The C4-C5 stretching frequency for free monoanionic 8-nitroxanthine was at 1545 cm(-)(1), indicating that the enzyme polarizes that bond when the ligand is bound. The C4-C5 stretching frequency in dianionic 8-nitroxanthine is also shifted by 4 cm(-)(1) to lower frequency upon binding. For 8-nitroxanthine free in solution, the C4-C5 stretching frequency shifts to lower frequency upon deprotonation, and the absorption maximum in the UV-visible spectrum shifts to higher wavelength. The spectral shifts observed upon binding of 8-nitroxanthine to urate oxidase are consistent with increased anionic character of the ligand, which is expected to promote catalysis in the reaction with the natural substrate urate. In the Raman spectra of 8-nitroxanthine bound to the F179A, F179Y, and K9M mutant proteins, the C4-C5 stretching frequency was not perturbed from its position for the unbound ligand. Both V(max) and V/K were decreased in the mutant enzymes, demonstrating a correlation between the interaction that perturbs the C4-C5 stretching frequency and the catalytic activity of the enzyme. It is suggested that hydrogen-bonding interactions that lead to precise positioning and deprotonation of the substrate are perturbed by the mutations.  相似文献   

12.
Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.  相似文献   

13.
Xanthurenic acid, a product of tryptophan–NAD pathway, and quinoline compounds produced reactive oxygen species as a complex with iron. Aconitase, the most sensitive enzyme to oxidative stress was inactivated effectively by xanthurenic acid and to a lesser extent by 8-quinolinol in the presence of ferrous sulfate. The inactivation of aconitase was iron-dependent, and was prevented by TEMPOL, a scavenger of reactive oxygen species, suggesting that reduced iron bound to xanthurenic acid or 8-quinolinol can activate oxygen molecule to form superoxide radical. However, kynurenic acid and quinaldic acid without 8-hydroxyl group did not produce reactive oxygen species. Of the quinoline compounds tested, xanthurenic acid and 8-quinolinol with 8-hydroxyl group stimulated the autooxidation of ferrous ion, but kynurenic acid and quinaldic acid did not affect the oxidation of ferrous ion. Hydroxyl group at 8-positions of quinoline compounds was essential for the binding of iron causing the generation of reactive oxygen species. 8-Quinolinol effectively enhanced the ascorbate/copper-mediated formation of 8-hydroxy-2′-deoxyguanosine in DNA, suggesting the quinolinol/copper-dependent stimulation hydroxyl radical formation. Xanthurenic acid and 8-quinolinol as the metal–chelate complexes can show various cytotoxic effects by generating reactive oxygen species through the ferrous or cuprous ion-dependent activation of oxygen molecule. † This paper is dedicated to centennial of the birthday of the late Professor Emeritus Yahito Kotake, a pioneer of the xanthurenic acid research.  相似文献   

14.
Chronic inflammation results in increased nitric oxide formation and nitrite (NO-2) accumulation. Activated phagocytes release myeloperoxidase generating the cytotoxic agent hypochlorous acid (HOCl). Reaction of HOCl with NO-2 results in the formation of nitryl chloride (NO2Cl), a potent oxidising, nitrating and chlorinating species. Exposure of DNA to NO-2 alone (up to 250 microM) at pH 7.4 did not induce oxidative DNA base damage. However, incubation of DNA with NO-2 in the presence of HOCl led to increases in thymine glycol, 5-hydroxyhydantoin, 8-hydroxyadenine and 5-chlorouracil to levels higher than those achieved by HOCl alone. No significant increases in 8-hydroxyguanine, xanthine, hypoxanthine, 2-hydroxyadenine, FAPy guanine, FAPy adenine and 8-chloroadenine were observed. HOCl-induced depletion of FAPy guanine and 8-hydroxyguanine was reduced in the presence of NO-2. Modification of DNA by HOCl/NO-2 (presumably generating NO2Cl) produces a pattern of DNA base damage products in isolated DNA that is similar to the pattern produced by HOCl but not other reactive species.  相似文献   

15.
Reactive intermediates generated by phagocytes damage DNA and may contribute to the link between chronic inflammation and cancer. Myeloperoxidase, a heme protein secreted by activated phagocytes, is a potential catalyst for such reactions. Recent studies demonstrate that this enzyme uses hydrogen peroxide (H2O2) and nitrite (NO2-) to generate reactive nitrogen species which convert tyrosine to 3-nitrotyrosine. We now report that activated human neutrophils use myeloperoxidase, H2O2, and NO2- to nitrate 2'-deoxyguanosine, one of the nucleosides of DNA. Through HPLC, UV/vis spectroscopy, and mass spectrometry, the two major products of this reaction were identified as 8-nitroguanine and 8-nitro-2'-deoxyguanosine. Nitration required each component of the complete enzymatic system and was inhibited by catalase and heme poisons. However, it was independent of chloride ion and little affected by scavengers of hypochlorous acid, suggesting that the reactive agent is a nitrogen dioxide-like species that results from the one-electron oxidation of NO2- by myeloperoxidase. Alternatively, 2'-deoxyguanosine might be oxidized directly by the enzyme to yield a radical species which subsequently reacts with NO2- or NO2* to generate the observed products. Human neutrophils stimulated with phorbol ester also generated 8-nitroguanine and 8-nitro-2'-deoxyguanosine. The reaction required NO2- and was inhibited by catalase and heme poisons, implicating myeloperoxidase in the cell-mediated pathway. These results indicate that human neutrophils use the myeloperoxidase-H2O2-NO2- system to generate reactive species that can nitrate the C-8 position of 2'-deoxyguanosine. Our observations raise the possibility that reactive nitrogen species generated by myeloperoxidase and other peroxidases contribute to nucleobase oxidation and tissue injury at sites of inflammation.  相似文献   

16.
8-硝基鸟嘌呤(8-nitroguanine, 8-NitroG)和8-羟基脱氧鸟苷(8-hydroxy-2′-deoxyguanosine, 8-OHdG)是2个氧化性DNA损伤生物标志物,而诱导型一氧化氮合酶(iNOS)在病理状态下催化细胞合成与氧化性DNA损伤有关的 氧自由基NO.本研究通过检测鼻咽癌组织中8-NitroG、8-OHdG和iNOS的免疫反应强度,初步探究鼻咽癌的发生和发展是否与氧化性DNA损伤有关以及8-NitroG、8-OHdG与iNOS表达的关系.利用多克隆抗体8-NitroG和单克隆抗体8-OHdG、iNOS,采用双色荧光免疫组织化学方法检测鼻咽癌组织中8-NitroG、8-OHdG和iNOS的免疫反应,秩和检验统计学方法分析鼻咽癌和慢性咽炎鼻咽组织之间8-NitroG、8-OHdG和iNOS免疫反应强度的差异.结果显示,19例鼻咽癌组织细胞中,8-NitroG、8-OHdG和iNOS均为强免疫反应,8-NitroG和8-OHdG阳性率100%,iNOS阳性率94.7 %,与13例慢性咽炎组织比较差异显著(P.<0.05).结果提示,鼻咽癌的发生和发展与氧化性DNA损伤有关,其原因与炎症等病理刺激下鼻咽组织高表达的iNOS催化细胞合成氧自由基NO引起的8-NitroG和8-OHdG DNA损伤密切相关.另外,8-NitroG和8-OHdG有望成为辅助鼻咽癌诊断的生物标志物.  相似文献   

17.
Bleomycin, in the presence of ferric salts, oxygen and a suitable reductant, degrades DNA with the release of base propenals, detected as thiobarbituric acid (TBA) reactivity, and the formation of 8-hydroxydeo-xyguanosine (80HdG) detected by HPLC. When xanthine oxidase is added to the incubated mixture of DNA degradation products, TBA-reactivity is destroyed but 80HdG formation is increased. EPR Spin trapping experiments show that hydroxyl radicals (OH) are formed in the reaction mixture and can be inhibited by the inclusion of either superoxide dismutase or catalase. These findings suggest that the base propenals and possibly malondialdehyde, formed from them, are aldehydic substrates for xanthine oxidase and, the product of this reaction is superoxide (O2-) and hydrogen peroxide (H2O2). Thus, TBA reactivity is destroyed in the formation of O2- and H2O2 which stimulate further oxidative damage to DNA resulting in increased 8OHdG formation.  相似文献   

18.
We investigated the reaction of 2'-deoxyguanosine (dGuo) with NO/O2 gas mixture under physiological condition and detected 8-nitroguanine, which is known as a novel DNA lesion caused by peroxynitrite (ONOO-). The yield increased with increase in the ratio of O2 and pH. The reaction mechanism is discussed.  相似文献   

19.
Degenerative diseases such as cancer are induced by oxidative genetic damage. Antioxidants can scavenge reactive oxygen species, but to prevent disease, they must do so quickly, before the DNA bases are damaged. In the present study, a novel method was established for evaluating the potency of antioxidants employing 2'-deoxyguanosine as a target and 2,2'-azobis(2-amidinopropane) dihydrochloride as a reactive oxygen generator. The reaction formed one product linearly with time. This product was a novel 8-hydroperoxy-2'-deoxyguanosine (8-OOHdG). Using this system, 81 antioxidants occurring in our diet were assayed for activity to suppress the formation of 8-OOHdG by high-performance liquid chromatography (HPLC). The system was useful for the evaluation of antioxidative potency, compared to another method utilizing 1,1-diphenyl-2-picrylhydrazyl (DPPH). Further, it was enabled to examine the synergism of antioxidants. The formation of 8-OOHdG started only after the antioxidants had been consumed. Ascorbic acid, quercetin, and epigallocatechin gallate together delayed the formation by the sum total of the delay times of each factor alone. The proposed method is simple and easy, and can evaluate which dietary antioxidants inhibit reactive oxygen species more quickly than the DNA bases are damaged.  相似文献   

20.
We reported here the reaction, in acidic conditions, of peroxynitrite (ONOO(-)) with the anaesthetic agent propofol (2,6-diisopropylphenol, PPF). The most interesting finding is that peroxynitrite is able to nitrate and to oxidize propofol leading to 4-nitropropofol, quinone, and diphenylquinone as the major products. More surprisingly, we also found that peroxynitrite is capable of halogenating propofol in the presence of halide ions, suggesting the formation of nitrosyl chloride (NOCl) or nitryl chloride (NO(2)Cl) from the reaction of peroxynitrite with chloride ions. A significant enhancement of the halogenation yield is observed with a simultaneous decrease of the yields of the other products in the presence of methanol or hydrogen peroxide. Increased halogenation of PPF probably results from the formation of peroxynitrate (O(2)NOO(-)), that further oxidizes chloride ions in hypochlorous acid (HOCl) or molecular chlorine (Cl(2)). Spontaneous decay of peroxynitrate is relatively slow in acidic medium, thus explaining the decrease of the yields of the other products. By direct EPR techniques, we also observed that this reaction occurs via a radical pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号