首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
The evolution ofMHC polymorphism has been studied by comparing the amino acid and nucleotide sequences of 14 bovine and 32 humanDRB alleles. The comparison revealed an extensive sharing of polymorphic sequence motifs in the two species. Almost identical sets of residues were found at several highly polymorphic amino acid positions in the putative antigen recognition site. Consequently, certain bovine alleles were found to be more similar to certain human alleles than to other bovine alleles. In contrast, the frequencies of silent nucleotide substitutions were found to be much higher in comparisons between species than within species implying that none of the human or bovine DRB alleles originated before the divergence of these distantly related species. The results suggest that the observed similarity inDRB polymorphism is due to convergent evolution and possibly the sharing of short ancestral sequence motifs. However, the relative role of the latter mechanism is difficult to assess due to the biased base composition in the first domain exon of polymorphic class 11 genes. The frequency of silent substitutions betweenDRB alleles was markedly lower in cattle than in man suggesting that theDRB diversity has evolved more rapidly in the former species.  相似文献   

2.
3.
4.
5.
Gene duplications and sequence polymorphism of bovine class II DQB genes   总被引:2,自引:2,他引:0  
The genetic diversity of bovine class II DQB genes was investigated by polymerase chain reaction amplification and DNA sequencing. The first domain exon was amplified from genomic DNA samples representing 14 class II haplotypes, defined by restriction fragment length polymorphism (RFLP) analysis. The presence of a polymorphism in the copy number of DQB genes was confirmed since two DQB sequences were isolated from certain haplotypes. Four subtypes of bovine DQB genes were found. DQB1 is the major type and was found in almost all haplotypes. DQB2 is very similar to DQB1 but was found only in the duplicated haplotypes DQ9 to 12. DQB3 and DQB4 are two quite divergent genes only present in certain duplicated haplotypes. The bovine DQB complexity thus resembles that in the human DRB region. Bovine DQB genes were found to be highly polymorphic as ten DQB1 alleles and four DQB2 alleles were identified. The observed sequence polymorphism correlated well with previously defined DQB RFLPs. Bovine and human DQB alleles show striking similarities at the amino acid level. In contrast, the frequency of silent substitutions is much higher in comparisons of DQB alleles between species than within species ruling out the possibility that any of the contemporary DQB alleles have been maintained since the divergence of humans and cattle. The frequency of silent substitutions between DQB alleles was markedly lower in cattle than in humans, in agreement with a previous comparison of human and bovine DRB alleles.  相似文献   

6.
The polymorphism of the major histocompatibility complex (MHC) class II DRB gene of riverine buffalo (Bubalus bubalis) was studied. Second exon sequences from the buffalo DRB locus, homologous to the cattle DRB3 gene, were amplified and characterized. A combination of single strand conformation polymorphism (SSCP) and heteroduplex analysis (HA) in a non-denaturing gel was used to identify new DRB second exon sequences. SSCP, HA and finally sequencing allowed the identification of 22 MHC-DRB exon 2 alleles from 25 unrelated Indian river buffalo. These are the first river buffalo DRB second exon sequences reported. A high degree of polymorphism in the sequences encoding the peptide binding regions was observed and some amino acid substitutions were found unique to the river buffalo.  相似文献   

7.
The applicability of single strand conformation polymorphism (SSCP) analysis for major histocompatibility complex (MHC) genotyping in sheep was studied. A panel of Ovar-DRB1 exon 2 'allele fingerprints' was defined. The panel could accelerate DRB1 genotyping of new breeds when already existing sequences are used as references in SSCP analysis. In this study, seven new exon 2 sequences and 19 different alleles in total were detected from 31 animals of Finnish and Russian sheep breeds. Ovar-DRB1 * 0201 was detected in all the six grey Finnsheep animals included in this study, suggesting reduced MHC diversity within these animals.  相似文献   

8.
The immunopolymorphism database (IPD) provides a single nomenclature for alleles at the major histocompatibility complex (MHC) loci for a range of different species. The minimum requirements for inclusion of a sheep class II DRB1 sequence is a submission that includes all polymorphic sites within the second exon from at least two independent polymerase chain reactions (PCR). In order to meet these requirements, we have developed a DNA-based genotyping method for the rapid analysis of allelic diversity at the DRB1 locus in domestic sheep, Ovis aries. Using a series of primers located within introns flanking exon 2 and genomic DNA from a cohort of 214 sheep representing 15 different breeds and crossbreeds, the complete exon 2 sequences of 38 Ovar-DRB1 alleles were obtained. This sequence resource allowed the development of a generic set of locus-specific primers which amplify a fragment that includes all polymorphic sites within the second exon. Bidirectional sequence analysis of the PCR product provides a composite sequence where each polymorphic site is represented by the corresponding International Union of Biochemistry nucleotide code. A Basic Local Alignment Search Tool search of alleles held within the IPD or National Center for Biotechnology Information databases allows individual allele sequences to be identified. Low levels of homozygosity (7.48%) within the cohort and verification of previously genotyped samples confirmed the broad allelic specificity of this method. It improves on currently available methods and is broadly applicable to the analysis of MHC diversity in studies investigating linkages with resistance or susceptibility to disease.  相似文献   

9.
The genetic diversity in the first domain exon of a bovine class II DRB gene was investigated by PCR amplification and DNA sequencing. Genomic DNA samples representing 14 different class II haplotypes, defined by RFLP analysis, were used. The analysis revealed an extensive polymorphism and 14 alleles at a single locus, designated DRB3, were identified. Multiple amino acid substitutions were found in all pairwise comparisons of alleles; 5 to 21 substitutions in the 83 positions compared. The genetic diversity at the amino acid level found in cattle matches the one previously found in the DRB1 locus in man. The significantly higher frequency of replacement substitutions compared with the frequency of silent substitutions provides strong evidence that there is selection for genetic diversity in the bovine DRB3 first domain exon. A comparison of the DRB polymorphism in man and cattle reveals a striking similarity as regards the location of polymorphic positions in the DRB molecule and the degree of polymorphism at polymorphic positions. The majority of polymorphic positions in both species are found in the proposed antigen recognition site of the class II molecule. In addition, there are eight positions which are polymorphic in both species but have not been assigned to the antigen recognition site. The possible functional significance of the polymorphism of these latter positions is discussed.  相似文献   

10.
Mayer F  Brunner A 《Heredity》2007,99(3):257-264
The immune genes of the major histocompatibility complex (MHC) are classical examples for high levels of genetic diversity and non-neutral evolution. This is particularly true for the regions containing the antigen-binding sites as, for instance, in the exon 2 of the MHC class II gene DRB. We surveyed, for the first time in the order Chiroptera, the genetic diversity within this exon in the sac-winged bat Saccopteryx bilineata. We detected 11 alleles among 85 bats, of which 79 were sampled in one population. Pairwise comparisons revealed that interallelic sequence differences ranged between 3 and 22%, although nucleotide substitutions were not evenly distributed along the exon sequence. This was most probably the result of intragenic recombination. High levels of sequence divergence and significantly more nonsynonymous than synonymous substitutions (d(N)/d(S)>1) suggest long-term balancing selection. Thus, the data are consistent with the hypothesis that recombination gives rise to new alleles at the DRB locus of the sac-winged bat, and these are maintained in the population through balancing selection. In this respect, the sac-winged bat closely resembles other mammalian species.  相似文献   

11.
Jugo BM  Vicario A 《Immunogenetics》2000,51(11):887-897
Single-strand conformational polymorphism analysis and DNA sequencing were used to characterize Mhc-DRB second exon variability in the Latxa and Karrantzar breeds of sheep. The presence of more than two sequences in some animals indicates that alleles of two different loci have been amplified. Six new alleles were identified by sequencing. The allele frequency distribution of the DRB1 gene is striking, with two alleles accounting for half of the gene pool in both breeds under study. The most frequent allele in both breeds was the same (named DRB1*0702), with some specific amino acids: Tyr in position 31 and Thr in 51. A species variability analysis was also performed including the entire set of sheep DRB exon 2 sequences. Based on the patchwork patterns of different alleles, interallelic recombination appears to be playing a significant role in the generation of allelic diversity at this locus in sheep. The phylogenetic tree of all known Caprinae DRB sequences shows that certain alleles from one species are more closely related to those from other species than they are to each other. Allele DRB1*0702 merits special attention due to its high similarity to the Mufflon allele. As this is the most frequent in both breeds analyzed, one can hypothesize that in sheep, both Mufflon and Argali have had different influences depending on the sheep breed under study and that the relationship between domestic sheep and Mufflon is greater than previously thought. The data generated in this study can serve as a basis for developing a typing assay for the sheep DRB genes in the Latxa and Karrantzar populations.  相似文献   

12.
Hypervariability of intronic simple (gt)n(ga)m repeats in HLA-DRB genes   总被引:2,自引:2,他引:0  
We have investigated the extent of DNA variability in intronic simple (gt)n(ga)m repeat sequences and correlated this to sequence polymorphisms in the flanking exon 2 of HLA-DRB genes. The polymerase chain reaction (PCR) was used to amplify a DNA fragment containing exon 2 and the repeat region of intron 2. The PCR products were separated on sequencing gels in order to demonstrate length hypervariability of the (gt)n(ga)m repeats. In a parallel experiment, the PCR products were cloned and sequenced (each exon 2 plus adjacent simple repeats) to characterize the simple repeats in relation to the HLA-DRB sequences. In a panel of 25 DRB1, DRB4, and DRB5 alleles new sequences were not detected. Restriction fragment length polymorphism (RFLP) subtyping of serologically defined haplotypes corresponds to translated DNA sequences in 85% of the cases, the exceptions involving unusual DR/DQ combinations. Many identical DRB1 alleles can be distinguished on the basis of their adjacent simple repeats. We found group-specific organization of the repeats: the DRw52 supergroup repeats differ from those of DRB1*0101, DRB4*0101, and DRB5*0101 alleles and from those of pseudogenes. Finally, we amplified baboon DNA and found a DRB allele with extensive similarity to DRB1 sequences of the DRw52 supergroup. The simple repeat of the baboon gene, however, resembles that of human pseudogenes. In addition to further subtyping, the parallel study of polymorphic protein and hypervariable DNA alleles may allow conclusions to be drawn on the relationships between the DRB genes and perhaps also on the theory of trans-species evolution.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M 34258.  相似文献   

13.
猪MHC-DQB、DRB近端调控区序列及其多态性   总被引:6,自引:0,他引:6  
根据人MHC—DRB和MHC—DQB基因组序列和猪MHC-DRB和MHC-DQB基因外显子1设计引物,应用PCR扩增及克隆测序技术,首次得到了猪MHC-DRB和MHC-DQB基因的5上游近端调控区(URR)序列。分析发现所得序列中存在与MHCⅡ类基因表达调控有关的高度保守的W、X、Y、CCAAT及类TATA调控元件,调控元件的空间组织顺序也与其他物种相应序列的相同。利用SSCP技术在313头猪中共发现12个DRB-URR复等位基因和14个DQB-URR复等位基因,序列比对结果表明在这些复等位基因中存在丰富的多态位点,为进一步深入研究猪MHCⅡ类基因近端调控区的多态性及抗病育种研究奠定了基础。  相似文献   

14.
The melanophilin (MLPH) gene has been characterized as the candidate gene for dilute coat color in some species, but little is known about it in the goat. In this study, part of the genomic DNA sequence (19,289 bp) containing the whole coding region of the MLPH gene from goat, as well as from sheep, was determined. We found 16 exons and 15 introns; the coding region was 1767 bp distributed in 15 exons (2–16). In sheep, the length of part of the genomic DNA sequence was 16,988 bp, with 16 exons and 15 introns, and the coding region was 1833 bp, distributed in 15 exons (2–16). Dozens of SNPs as well as some noticeable motifs in the goat MLPH gene were found during the process of sequencing and polymorphism screening. Based on the SSR Tool, three simple sequence repeat motifs were detected in the goat and sheep DNA sequences. Compared with cattle, we found insertions of 4 amino acids in goats and 26 amino acids in sheep.  相似文献   

15.
The episialin gene (MUC1) encodes an epithelial mucin containing a variable number of repeats with a length of twenty amino acids, resulting in many different alleles that can be subdivided into two size classes. The episialin pre-mRNA uses either one of two neighbouring splice acceptor sites for exon 2, which mainly encodes the repeats. Using the genetic polymorphism of the episialin gene to identify different alleles, we show here that the splice site recognition is allele dependent and is based on a single A/G nucleotide difference in exon 2 eight nucleotides downstream of the second splice acceptor site. Transfection experiments confirm that this polymorphic nucleotide regulates the splice site selection. The identity of this nucleotide is in most cases correlated with one of the size classes of the alleles, indicating that mutations altering the number of repeats seldom arise by unequal cross-over between the repeat regions.  相似文献   

16.
The first domain exon of a porcine DRB gene was amplified by the polymerase chain reaction (PCR), and the nucleotide sequence was determined. In a material consisting of 10 unrelated animals, five different alleles were identified, all probably belonging to a single locus designated DRB1. In addition, a non-expressed locus, designated DRBP, was coamplified with DRB1. This pseudogene, containing a single base deletion, also exhibited some variation, but at a very restricted level compared with DRB1. In pairwise comparisons of DRB1 alleles, the number of amino acid substitutions ranged between 6 and 21 out of 83 positions compared.  相似文献   

17.
利用一对简并引物扩增了尼罗鳄MHCⅡ类分子B基因第二外元的部分片段,并对PCR产物进行了克隆和测序,结果得到8种不同的序列,序列长度为166 bp;经分析,序列中有56个变异位点,核苷酸的非同义替换多于同义替换,造成30个位点氨基酸的改变,氨基酸的替换趋于集中在假定的抗原结合位点附近.核苷酸和氨基酸序列与已报道的扬子鳄和密河鳄的MHCⅡ类B基因第二外元序列有较高的同源性,利用PAUP4.0软件构建的NJ树显示,鳄类的MHCⅡ类B基因存在跨种多态性现象.  相似文献   

18.
An efficient oligonucleotide typing method for the highly polymorphic MHC-DRB genes is described for artiodactyls like cattle, sheep and goat. By means of the polymerase chain reaction, the second exon of MHC-DRB is amplified as well as part of the adjacent intron containing a mixed simple repeat sequence. Using this primer combination we were able to amplify the MHC-DRB exons 2 and adjacent introns from all of the investigated 10 species of the family of Bovidae and giraffes. Therefore, the DRB genes of novel artiodactyl species can also be readily studied. Oligonucleotide probes specific for the polymorphisms of ungulate DRB genes are used with which sequences differing in at least one single base can be distinguished. Exonic polymorphism was found to be correlated with the allele lengths and the patterns of the repeat structures. Hence oligonucleotide probes specific for different simple repeats and polymorphic positions serve also for typing across species barriers. The strict correlation of sequence length and exonic polymorphism permits a preselection of specific oligonucleotides for hybridization. Thus more than 20 alleles can already be differentiated from each of the three species.  相似文献   

19.
Gene products encoded by the major histocompatibility complex often exhibit a high degree of polymorphism. In humans the HLA-DR polymorphism is due to more than 50 alleles with varying exon 2 sequences. Each group of DRB alleles contains a certain form of the basic simple repeat motif (gt)n(ga)m in intron 2. Identical alleles can be differentiated on the basis of the hypervariable repeat. In this study focused on cattle (Bos taurus) we identified different Bota-DRB alleles in a limited survey by amplification via polymerase chain reaction and sequencing. In addition DRB exon 2 sequences were also obtained from eight additional hoofed animal species (seven horned artiodactyls and one pig) revealing artiodactyl-specific polymorphic and nonpolymorphic substitutions. In the genus Bos the intronic simple repeat variability was compared with exonic DRB polymorphism. As in humans all Bota-DRB exons were always associated with specifically organized basic simple repeat structures. Yet the extent of simple repeat variability was lower in cattle compared to humans. Selective breeding in the process of domestication might be responsible for the diminished intronic hypervariability. Nevertheless, the hypermutable simple repeat sequences have been preserved in the same position and with the same principal structure for at least 70 × 106 years of evolution. Unexpectedly, the rate of intronic simple repeat and exonic changes appear quite similar.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号