首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moss samples from the Fluxnet-Canada western peatland flux station in the Boreal Region of Alberta were measured in the laboratory to obtain the net photosynthesis rate and chlorophyll fluorescence of the moss under controlled environmental conditions, including the regulation of moss water content, simultaneously with measurements of moss spectral reflectance. One objective was to test whether the photochemical reflectance index (PRI) detected changes in moss photosynthetic light-use efficiency that were consistent with short-term (minutes to hours) changes in xanthophyll cycle pigments and associated changes in non-photochemical quenching (NPQ), as recorded by chlorophyll fluorescence. The rate of net photosynthesis was strongly inhibited by water content at values exceeding approximately 9 (fresh weight/dry weight) and declined as the water content fell below values of approximately 8. Chlorophyll fluorescence measurements of maximum photosystem II efficiency generally remained high until the water content was reduced from the maximum of about 20 to values of approximately 10–11, and then declined with further reductions in moss water content. A significant linear decline in NPQ was observed as moss water content was reduced from maximum to low water content values. There was a strong negative correlation between changes in NPQ and PRI. These data suggest that PRI measurements are a good proxy for short-term shifts in photosynthetic activity in Sphagnum moss. A second objective was to test how accurately the water band index (WBI, ratio of reflectance at 900 and 970 nm) recorded changes in moss water content during controlled laboratory studies. Strong linear relationships occurred between changes in moss water content and the WBI, although the slopes of the linear relationships were significantly different among sample replicates. Therefore, WBI appeared to be a useful tool to determine sample-specific water content without destructive measurements.  相似文献   

2.
The photochemical reflectance index (PRI) is regarded as a promising proxy to track the dynamics of photosynthetic light use efficiency (LUE) via remote sensing. The implementation of this approach requires the relationship between PRI and LUE to scale not only in space but also in time. The short-term relationship between PRI and LUE is well known and is based on the regulative process of non-photochemical quenching (NPQ), but at the seasonal timescale the mechanisms behind the relationship remain unclear. We examined to what extent sustained forms of NPQ, photoinhibition of reaction centres, seasonal changes in leaf pigment concentrations, or adjustments in the capacity of alternative energy sinks affect the seasonal relationship between PRI and LUE during the year in needles of boreal Scots pine. PRI and NPQ were highly correlated during most of the year but decoupled in early spring when the foliage was deeply downregulated. This phenomenon was attributed to differences in the physiological mechanisms controlling the seasonal dynamics of PRI and NPQ. Seasonal adjustments in the pool size of the xanthophyll cycle pigments, on a chlorophyll basis, controlled the dynamics of PRI, whereas the xanthophyll de-epoxidation status and other xanthophyll-independent mechanisms controlled the dynamics of NPQ at the seasonal timescale. We conclude that the PRI leads to an underestimation of NPQ, and consequently overestimation of LUE, under conditions of severe stress in overwintering Scots pine, and most likely also in species experiencing severe drought. This severe stress-induced decoupling may challenge the implementation of the PRI approach.  相似文献   

3.
Pigment combinations are regulated during leaf ontogenesis. To better understand pigment function, alterations in chlorophyll, carotenoid and anthocyanin concentrations were investigated during different leaf development stages in six subtropical landscape plants, namely Ixora chinensis Lam, Camellia japonica Linn, Eugenia oleina Wight, Mangifera indica L., Osmanthus fragrans Lowr and Saraca dives Pierre. High concentrations of anthocyanin were associated with reduced chlorophyll in juvenile leaves. As leaves developed, the photosynthetic pigments (chlorophyll and carotenoid) of all six species increased while anthocyanin concentration declined. Chlorophyll fluorescence imaging of ΦPSII (effective quantum yield of PSII) and of NPQ (non-photochemical fluorescence quenching) and determination of electron transport rate-rapid light curve (RLC) showed that maximum ETR (leaf electron transport rate), ΦPSII and the saturation point in RLC increased during leaf development but declined as they aged. Juvenile leaves displayed higher values of NPQ and Car/Chl ratios than leaves at other developmental stages. Leaf reflectance spectra (400–800 nm) were measured to provide an in vivo non-destructive assessment of pigments in leaves during ontogenesis. Four reflectance indices, related to pigment characters, were compared with data obtained quantitatively from biochemical analysis. The results showed that the ARI (anthocyanin reflectance index) was linearly correlated to anthocyanin concentration in juvenile leaves, while a positive correlation of Chl NDI (chlorophyll normalized difference vegetation index) to chlorophyll a concentration was species dependent. Photosynthetic reflectance index was not closely related to Car/Chl ratio, while a structural-independent pigment index was not greatly altered by leaf development or species. Accordingly, it is suggested that the high concentration of anthocyanin, higher NPQ and Car/Chl ratio in juvenile leaves are important functional responses to cope with high radiation when the photosynthetic apparatus is not fully developed. Another two leaf reflectance indices, ARI and Chl NDI, are valuable for in vivo pigment evaluation during leaf development.  相似文献   

4.
This study examined the ability of the photochemical reflectance index (PRI) to track changes in effective quantum yield (Δ F/F m ′), non-photochemical quenching (NPQ), and the xanthophyll cycle de-epoxidation (DPS) in an experimental mangrove canopy. PRI was correlated with (Δ F/F m ′) and NPQ over the 4-week measurement period and over the diurnal cycle. The normalised difference vegetation index (NDVI) was not correlated with any aspect of photochemical efficiency measured using chlorophyll fluorescence or xanthophyll pigments. This study demonstrated that photochemical adjustments were responsible for controlling the flow of energy through the photosynthetic apparatus in this mangrove forest canopy rather than canopy structural or chlorophyll adjustments.  相似文献   

5.
通过林地穿透雨排除的方法模拟降雨减少,测定河南宝天曼自然保护区锐齿栎叶片光合色素含量与反射光谱的季节变化,对减雨处理造成的光合色素变化及其反射光谱的变化进行了定量分析,并探讨了水分控制条件下反射光谱对叶片光合色素变化的响应机制.结果表明: 锐齿栎叶片的光合色素含量和色素比率均呈现明显的季节变化.减雨样地与对照样地叶片的光合色素含量和比率在生长季的各个时期存在差异,其中,叶片叶绿素b(Chl b)含量的差异显著,说明Chl b对减雨处理的敏感性最高,叶片类胡萝卜素(Car)含量的差异较小,说明Car对减雨处理的敏感性相对较弱.550 nm处的光谱反射率对色素季节变化的响应最敏感,以其构造的简单比值指数(SR750,550)与叶片Chl a、Chl b、总Chl和Car含量的正相关关系显著,光化学反射指数(PRI)与叶片Car/Chl的负相关关系显著.550 nm处的光谱反射率对减雨处理造成的色素变化响应最为敏感.SR750,550对减雨处理造成的叶片Chl a、Chl b和总Chl的含量变化表现敏感(P<0.01),对Chl a/b的变化不敏感.PRI对减雨处理造成的叶片Car/Chl变化表现敏感(P<0.01).  相似文献   

6.

Background and aims

The photochemical reflectance index (PRI) is correlated to photosynthetic efficiency and has been successfully applied at multiple scales for remote estimation of physiological functioning. However, interpretation of the PRI signal can be confounded by many different variables including declines in photochemical pigments. Our study was aimed at investigating PRI in response to salinity stress, and evaluating physiological and pigment responses of two co-occurring shrubs, Baccharis halimifolia and Myrica cerifera in laboratory studies.

Methods

Photosynthesis, water relations, chlorophyll fluorescence, hyperspectral reflectance and leaf pigment contents were measured following salinity treatment.

Results

Physiological measurements indicated that both species exhibit adaptations which protect PSII during periods of stress. Chlorophyll fluorescence parameters were affected in both species, but indicated that other photochemical reactions (e.g. photorespiration) were important for energy dissipation in absence of chlorophyll changes. After many days of reduced photosynthesis, photochemical changes were detectable using PRI indicating chronic stress.

Conclusions

Variations in PRI were not related to changes in pigments but strongly related to tissue chlorides indicating salinity effects on the PRI signal. Thus, PRI is an indicator of salinity stress in these coastal species and may be as an early signal for increasing salt exposure associated with rising sea-level and climate change.  相似文献   

7.
Assessing leaf pigment content and activity with a reflectometer   总被引:45,自引:1,他引:45  
This study explored reflectance indices sampled with a 'leaf reflectometer' as measures of pigment content for leaves of contrasting light history, developmental stage and functional type (herbaceous annual versus sclerophyllous evergreen). We employed three reflectance indices: a modified normalized difference vegetation index (NDVI), an index of chlorophyll content; the red/green reflectance ratio ( R RED: R GREEN), an index of anthocyanin content; and the change in photochemical reflectance index upon dark–light conversions (ΔPRI), an index of xanthophyll cycle pigment activity. In Helianthus annuus (sunflower), xanthophyll cycle pigment amounts were linearly related to growth light environment; leaves in full sun contained approximately twice the amount of xanthophyll cycle pigments as leaves in deep shade, and at midday a larger proportion of these pigments were in the photoprotective, de-epoxidized forms relative to shade leaves. Reflectance indices also revealed contrasting patterns of pigment development in leaves of contrasting structural types (annual versus evergreen). In H. annuus sun leaves, there was a remarkably rapid increase in amounts of both chlorophyll and xanthophyll cycle pigments along a leaf developmental sequence. This pattern contrasted with that of Quercus agrifolia (coast live oak, a sclerophyllous evergreen), which exhibited a gradual development of both chlorophyll and xanthophyll cycle pigments along with a pronounced peak of anthocyanin pigment content in newly expanding leaves. These temporal patterns of pigment development in Q. agrifolia leaves suggest that anthocyanins and xanthophyll cycle pigments serve complementary photoprotective roles during early leaf development. The results illustrate the use of reflectance indices for distinguishing divergent patterns of pigment activity in leaves of contrasting light history and functional type.  相似文献   

8.
为明确干旱条件下混播和施氮对白羊草〔Bothriochloa ischaemum(Linn.)Keng〕叶片叶绿素荧光参数的影响,采用盆栽法并设置不同混播比例〔白羊草与柳枝稷(Panicum virgatum Linn.)混播比例分别为8:0、6:2、4:4和2:6〕、施氮水平(即不施氮和1kg干土施01g纯氮)和供水条件(即正常供水和干旱胁迫6d后复水),对白羊草叶片叶绿素荧光参数的变化进行比较分析;在此基础上,采用一般线性模型分析这3个因素及其交互作用对白羊草叶绿素荧光参数的影响效应.结果显示:正常供水条件下,各处理组白羊草的最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)、表观光合电子传递速率(ETR)、光化学淬灭系数(qP)和非光化学淬灭系数(NPQ)均无明显变化.干旱及复水条件下,不施氮处理组白羊草的Fv/Fm值在干旱胁迫6 d(即土壤相对含水量最低)时降至最低值,并在复水2 d后恢复至与正常供水条件下相近的水平,而施氮处理组的Fv/Fm值则一直保持与正常供水条件下相近的水平;不论施氮与否,各处理组白羊草的ΦPSⅡ、ETR、qP和NPQ值基本上均表现为在干旱胁迫6 d时达到最高值,并在复水2 d后恢复至正常供水条件下各参数值的90%以上.总体上看,混播白羊草的qP和ETR值均高于单播白羊草,而其NPQ值则低于后者.统计分析结果表明:混播比例、施氮水平和供水条件3个因素间的交互作用对白羊草的ΦPSⅡ、qP和ETR值无显著影响,施氮水平对NPQ值的单独作用、施氮水平和混播比例的交互作用对Fv/Fm值以及施氮水平和供水条件的交互作用对ETR值也无显著影响,但这3个因素的单独作用及两两因素间的交互作用对白羊草其余叶绿素荧光参数均有显著或极显著影响.研究结果表明:一定程度的干旱胁迫有利于提高白羊草叶片PSⅡ反应中心的开放程度、光合电子传递速率和热耗散过剩光能的能力;在干旱胁迫条件下,施氮有助于白羊草叶片维持PSⅡ反应中心的活性和光化学效率;并且,与柳枝稷适度混播可改善白羊草叶片的光合性能,提高其种间竞争适应性.  相似文献   

9.
用Li-6400XT便携式光合作用仪对濒危植物长序榆幼苗的各叶绿素荧光参数的日变化和快速光响应曲线进行了测定。结果发现,光系统Ⅱ(PSⅡ)的实际光化学效率(ΦPSⅡ)、电子传递速率(ETR)在整个白天阶段较稳定,下午18:00显著下降。光化学淬灭(qP)先增大后减小。非光化学淬灭(NPQ)呈现出与光化学淬灭(qP)相反的变化趋势,中午最低,说明长序榆幼苗光能利用率较高。快速光曲线表明实际光化学效率(ΦPSⅡ)和光化学淬灭(qP)随着光合有效辐射(PAR)的增大而减小,电子传递速率(ETR)和非光化学淬灭(NPQ)随着光合有效辐射(PAR)的增大而增大。使用幂函数能够很好的拟合实际光化学效率(ΦPSⅡ)和电子传递速率(ETR)随光强的变化,而对数函数能较好的拟合实际光化学淬灭(qP)和非光化学淬灭(NPQ)随光强的变化。  相似文献   

10.
Non‐photochemical quenching (NPQ) plays a major role in photoprotection. Anastatica hierochuntica is an annual desert plant found in hot deserts. We compared A. hierochuntica to three other different species: Arabidopsis thaliana, Eutrema salsugineum and Helianthus annuus, which have different NPQ and photosynthetic capacities. Anastatica hierochuntica plants had very different induction kinetics of NPQ and, to a lesser extent, of photosystem II electron transport rate (PSII ETR), in comparison to all other plants species in the experiments. The major components of the unusual photosynthetic and photoprotective response in A. hierochuntica were: (1) Low NPQ at the beginning of the light period, at various light intensities and CO2 concentrations. The described low NPQ cannot be explained by low leaf absorbance or by low energy distribution to PSII, but was related to the de‐epoxidation state of xanthophylls. (2) Relatively high PSII ETR at various CO2 concentrations in correlation with low NPQ. PSII ETR responded positively to the increase of CO2 concentrations. At low CO2 concentrations PSII ETR was mostly O2 dependent. At moderate and high CO2 concentrations the high PSII ETR in A. hierochuntica was accompanied by relatively high CO2 assimilation rates. We suggest that A. hierochuntica have an uncommon NPQ and PSII ETR response. These responses in A. hierochuntica might represent an adaptation to the short growing season of an annual desert plant.  相似文献   

11.
Some processes of excess radiation dissipation have been associated with changes in leaf reflectance near 531 nm. We aimed to study the relations between the photochemical reflectance index (PRI) derived from this signal, and photosynthetic radiation-use efficiency (defined as net CO2 assimilation rate/incident photon flux density) in a cereal canopy. Measurements of reflectance, fluorescence, gas exchange and xanthophyll cycle pigments were made in the morning, midday and afternoon in barley canopies with two levels of nitrogen fertilization. The photosynthetic radiation-use efficiency decreased at midday, mainly in the third leaf, in both treatments, with lower values for the nitrogen deficient leaves. The zeaxanthin content showed the inverse pattern, increasing at midday and in the nitrogen deficient treatment. The photosynthetic radiation-use efficiency was well correlated with the epoxidation state, EPS (violaxanthin + 0.5 antheraxanthin)/(violaxanthin + antheraxanthin + zeaxanthin). The PRI [here defined as (R539 - R570)/(R539+ R570)] was significantly correlated with epoxidation state and zeaxanthin and with photosynthetic radiation-use efficiency. These results validate the utility of PRI in the assessment of radiation-use efficiency at canopy level.  相似文献   

12.
通过短期增补UV-B辐射模拟试验,研究了青藏高原典型天气(晴天、多云、阴天)下高山植物美丽风毛菊叶片的叶绿素荧光参数变化.结果表明: 随天气由晴变阴,美丽风毛菊叶片暗适应3 min的PSⅡ最大光化学量子效率(Fv/Fm)显著升高,实际PSⅡ光化学效率(ΦPSⅡ)和光化学猝灭系数(qP)也升高,而非光化学猝灭系数(NPQ)则降低,可见光辐射(PAR)是影响PSⅡ光能转化效率的主要因素.增补UV-B辐射后,3种典型天气下,美丽风毛菊叶片的Fv/Fm和NPQ略有降低,ΦPSⅡ和qP略微增加,但对光合气体交换过程没有产生负影响.叶片净光合速率Pn和ΦPSⅡ的增高趋势与增补UV-B辐射下相对较多的UV-A成分有关,同时也得益于叶片厚度的增加. UV-B辐射对叶片光合机构具有潜在负影响.  相似文献   

13.
Iron deficiency (iron chlorosis) is the major nutritional stress affecting fruit tree crops in calcareous soils in the Mediterranean area. This work reviews the changes in PS II efficiency in iron-deficient leaves. The iron deficiency-induced leaf yellowing is due to decreases in the leaf concentrations of photosynthetic pigments, chlorophylls and carotenoids. However, carotenoids, and more specifically lutein and the xanthophylls of the V+A+Z (Violaxanthin+ Antheraxanthin+Zeaxanthin) cycle are less affected than chlorophylls. Therefore, iron-chlorotic leaves grown in either growth chambers or field conditions have increases in the molar ratios lutein/chlorophyll a and (V+A+Z)/chlorophyll a. These pigment changes are associated to changes in leaf absorptance and reflectance. In the chlorotic leaves the amount of light absorbed per unit chlorophyll increases. The low chlorophyll, iron-deficient leaves showed no sustained decreases in PS II efficiency, measured after dark adaptation, except when the deficiency was very severe. This occurred when plants were grown in growth chambers or in field conditions. However, iron-deficient leaves showed decreases in the actual PS II efficiency at steady-state photosynthesis, due to decreases in photochemical quenching and intrinsic PS II efficiency. Iron-chlorotic leaves were protected not only by the decrease in leaf absorptance, but also by down-regulation mechanisms enhancing non-photochemical quenching and thermal dissipation of the light absorbed by PS II within the antenna pigment bed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
In this study the variations in surface reflectance properties and pigment concentrations of Antarctic moss over species, sites, microtopography and with water content were investigated. It was found that species had significantly different surface reflectance properties, particularly in the region of the red edge (approximately 700 nm), but this did not correlate strongly with pigment concentrations. Surface reflectance of moss also varied in the visible region and in the characteristics of the red edge over different sites. Reflectance parameters, such as the photochemical reflectance index (PRI) and cold hard band were useful discriminators of site, microtopographic position and water content. The PRI was correlated both with the concentrations of active xanthophyll‐cycle pigments and the photosynthetic light use efficiency, Fv/Fm, measured using chlorophyll fluorescence. Water content of moss strongly influenced the amplitude and position of the red‐edge as well as the PRI, and may be responsible for observed differences in reflectance properties for different species and sites. All moss showed sustained high levels of photoprotective xanthophyll pigments, especially at exposed sites, indicating moss is experiencing continual high levels of photochemical stress.  相似文献   

15.
In higher‐latitude trees, temperature and photoperiod control the beginning and end of the photosynthetically active season. Elevated temperature (ET) has advanced spring warming and delayed autumn cooling while photoperiod remains unchanged. We assessed the effects of warming on the length of the photosynthetically active season of three provenances of Pinus strobus L. seedlings from different latitudes, and evaluated the accuracy of the photochemical reflectance index (PRI) and the chlorophyll/carotenoid index (CCI) for tracking the predicted variation in spring and autumn phenology of photosynthesis among provenances. Seedlings from northern, local and southern P. strobus provenances were planted in a temperature‐free‐air‐controlled enhancement (T‐FACE) experiment and exposed to ET (+1.5/3°C; day/night). Over 18 months, we assessed photosynthetic phenology by measuring chlorophyll fluorescence, gas exchange, leaf spectral reflectance and pigment content. During autumn, all seedlings regardless of provenance followed the same sequence of phenological events with the initial downregulation of photosynthesis, followed by the modulation of non‐photochemical quenching and associated adjustments of zeaxanthin pool sizes. However, the timing of autumn downregulation differed between provenances, with delayed onset in the southern provenance (SP) and earlier onset in the northern relative to the local provenance, indicating that photoperiod at the provenance origin is a dominant factor controlling autumn phenology. Experimental warming further delayed the downregulation of photosynthesis during autumn in the SP. A provenance effect during spring was also observed but was generally not significant. The vegetation indices PRI and CCI were both effective at tracking the seasonal variations of energy partitioning in needles and the differences of carotenoid pigments indicative of the stress status of needles. These results demonstrate that PRI and CCI can be useful tools for monitoring conifer phenology and for the remote monitoring of the length of the photosynthetically active season of conifers in a changing climate.  相似文献   

16.
三磷酸腺苷(ATP)不但分布在细胞内部, 而且广泛存在于动物和植物细胞的细胞外基质中。细胞外ATP (eATP)可与细胞膜表面相应的受体结合并激发细胞内的第二信使, 从而调节细胞的多种生理学功能。但目前对于eATP是否也能对植物的光合作用产生影响则研究较少。该文以菜豆(Phaseolus vulgaris)叶片为实验材料, 研究了在不同光强下eATP对菜豆叶片叶绿素荧光特性和光合放氧速率的影响。结果显示, 随着光强的增加, 叶片的光适应下最大光化学效率(Fv′/Fm′)、光系统II (PSII)实际光化学效率(Y(II))、光化学猝灭系数(qP)均呈现下降趋势, 而电子传递速率(ETR)、非光化学猝灭系数(qN)以及调节性能量耗散的量子产量(Y(NPQ))随着光强的增加呈上升趋势。与对照相比, eATP的处理可以显著提高菜豆叶片PSII的潜在最大光化学效率(Fv/Fm)、Y(II)、qP、ETR和光合放氧速率; 但eATP的处理对Fv′/Fm′、qN以及Y(NPQ)没有显著影响。AMP-PCP (β,γ-亚甲基三磷酸腺苷, eATP细胞外受体的抑制剂)的处理显著降低了Fv/FmFv′/Fm′、Y(II)、ETR和光合放氧速率, 同时也显著增加了qN以及Y(NPQ)的水平。以上结果显示, 植物eATP水平的变化对植物光合作用的光化学反应有着重要的影响。  相似文献   

17.
外源ATP对NaCl胁迫下菜豆叶片叶绿素荧光特性的调节   总被引:1,自引:0,他引:1  
盐胁迫是影响植物生长的主要逆境因子之一,外源ATP被发现可作为信号分子参与植物对逆境胁迫生理反应的调节。为了探明外源ATP在植物盐胁迫响应中的作用,以增强植物对土壤盐渍化的耐性,更好地应用于土壤盐渍化修复。该研究以菜豆( Phaseolus vulgaris)为材料,通过叶绿素荧光技术探讨了外源ATP 对菜豆叶片在NaCl胁迫下叶绿素荧光特性的变化规律。结果表明:在NaCl胁迫下,叶片光系统Ⅱ( PSⅡ)潜在最大光化学量子效率( Fv/Fm)、光适应下最大光化学效率( Fv′/Fm′)、PSⅡ光适应下实际光化学效率[ Y (Ⅱ)]、光化学荧光猝灭( qP)、电子传递速率( ETR)与对照组相比均有显著性下降,而非光化学猝灭( NPQ)和( qN)较对照组有显著性增加,这表明NaCl胁迫导致菜豆叶片光系统Ⅱ光化学效率的下降和光能耗散的增加。而外源ATP(eATP)的处理能有效缓解NaCl胁迫所造成的Fv/Fm、Fv′/Fm′、Y(Ⅱ)、qP、ETR下降和NPQ、qN的上升。该研究结果表明在NaCl胁迫下外源ATP可以有效地提高菜豆幼苗光系统Ⅱ( PSⅡ)的光化学反应效率。  相似文献   

18.
光化学植被指数估算植物光能利用率的研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
 应用遥感技术可以建立光化学植被指数(Photochemical reflectance index, PRI)和光能利用效率(Light use efficiency, LUE)的关系,LUE可用来估算净初级生产力(Net primary productivity, NPP)。因而,用PRI估算植物的LUE,为估算NPP提供了新的方法,弥补了以往以经验模式通过温度和水分对最大LUE的胁迫来获取实际LUE的不足,进而可提高NPP的估算精度。研究表明:PRI和LUE在叶片、冠层和景观尺度上都有着很好的相关性,但是随着尺度的变化,很多因素会对这一关系产生干扰,如水分、氮元素含量、叶面积指数和太阳高度角等,从而削弱了PRI和LUE的关系。该文对建立PRI和LUE的关系过程中的影响因素进行了分析,并指出今后这一研究领域中可能改进的方面,主要包括526 nm 和545 nm 处的反射率对531 nm 处的反射率的作用机制、PRI随LUE的饱和现象、PRI和LUE关系的时间效应以及利用PRI估算LUE的尺度效应。  相似文献   

19.
Méthy  M. 《Photosynthetica》2000,38(4):505-512
The photochemical reflectance index (PRI), based on reflectance signatures at 531 and 570 nm, and associated with xanthophyll pigment inter-conversion and related thylakoid energisation, was evaluated as an indicator of photosynthetic function in a Mediterranean holm oak (Quercus ilex L.) coppice. The chlorophyll fluorescence pulse-amplitude-modulation and the eddy correlation techniques were used to estimate the photosystem 2 photochemical efficiency of leaves and the CO2 flux over the canopy, respectively. The reflectance and fluorescence techniques yielded identical estimates of the photosynthetic activity in leaves exposed to dark-light-dark cycles or to a variable irradiance in laboratory. However, there was no such correlation between photosynthetic performance and PRI when applied to a sun-exposed canopy in field conditions. Fluorescence profiles inside the canopy and especially a helpful use of multispectral reflectance imaging highlight the limitations of such method.  相似文献   

20.
 为了探讨水分亏缺对叶片光合机构光化学量子效率和非辐射热耗散的影响,在新疆气候生态条件下,采用膜下滴灌技术精确地控制滴水量,实 现不同程度的土壤水分亏缺,系统测定了不同水分条件下陆地棉(Gossypium hirsutum)叶片叶绿素荧光参数、叶片接受光量子通量密度 (Photon flux density, PFD)、叶片温度(Leaf temperature, Tleaf)以及叶片水势和叶绿素含量的变化。研究表明:轻度水分亏缺(田间 持水量的 55%~60%)叶片接受的PFD与对照(田间持水量的70%~ 75%)无差异,Tleaf略高于对照;中度水分亏缺(田间持水量的40%~45%) 在12∶00 (北京时间,下同)以前叶片接受的PFD和对照无差异,随后显著低于对照,Tleaf在整个日变化中均高于对照。 不同水分处理对 黎明 前叶片PSⅡ最大光化学效率(The maximum photochemical efficiency of PSⅡ, Fv/Fm)没有影响。轻度水分亏缺叶片的实际光化学效率(PS Ⅱ photochemical efficiency,φPSⅡ)、表观电子传递速率( Electron transport rate, ETR)和光化学猝灭系数(Photochemical quenching,qp)的日变化与对照基本一致,非光化学猝灭系数(Non-photochemical quenching, NPQ)在12∶00以前和14∶00以后显著低于对 照,在12∶00~14∶00和对照无差异。中度水分亏缺叶片的φPSⅡ、ETR和qp在12∶00才显著降低,此后由于叶片出现暂时萎焉、下垂,所接受 的PFD减弱,叶绿素荧光参数缓慢恢复,且高于对照;NPQ在12∶00 以前显著高于对照,14∶00略高于对照,此后低于对照。水分亏缺导致中午 叶片水势和叶绿素a、叶绿素b含量降低,但叶绿素a/b比值升高。因此,在田间条件下,陆地棉可通过叶片萎焉下垂运动和叶绿素含量的变化调 节叶片对光能的捕获,以及通过光合电子传递、热耗散水平的变化来适应水分亏缺的逆境。在中度水分亏缺条件下,陆地棉叶片萎焉下垂运动 的被动调节减少了过量激发能对光合机构的伤害,保证了光合机构的正常运转。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号