首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 216 毫秒
1.
Complete sequence and genomic analysis of murine gammaherpesvirus 68.   总被引:32,自引:13,他引:19       下载免费PDF全文
Murine gammaherpesvirus 68 (gammaHV68) infects mice, thus providing a tractable small-animal model for analysis of the acute and chronic pathogenesis of gammaherpesviruses. To facilitate molecular analysis of gammaHV68 pathogenesis, we have sequenced the gammaHV68 genome. The genome contains 118,237 bp of unique sequence flanked by multiple copies of a 1,213-bp terminal repeat. The GC content of the unique portion of the genome is 46%, while the GC content of the terminal repeat is 78%. The unique portion of the genome is estimated to encode at least 80 genes and is largely colinear with the genomes of Kaposi's sarcoma herpesvirus (KSHV; also known as human herpesvirus 8), herpesvirus saimiri (HVS), and Epstein-Barr virus (EBV). We detected 63 open reading frames (ORFs) homologous to HVS and KSHV ORFs and used the HVS/KSHV numbering system to designate these ORFs. gammaHV68 shares with HVS and KSHV ORFs homologous to a complement regulatory protein (ORF 4), a D-type cyclin (ORF 72), and a G-protein-coupled receptor with close homology to the interleukin-8 receptor (ORF 74). One ORF (K3) was identified in gammaHV68 as homologous to both ORFs K3 and K5 of KSHV and contains a domain found in a bovine herpesvirus 4 major immediate-early protein. We also detected 16 methionine-initiated ORFs predicted to encode proteins at least 100 amino acids in length that are unique to gammaHV68 (ORFs M1 to 14). ORF M1 has striking homology to poxvirus serpins, while ORF M11 encodes a potential homolog of Bcl-2-like molecules encoded by other gammaherpesviruses (gene 16 of HVS and KSHV and the BHRF1 gene of EBV). In addition, clustered at the left end of the unique region are eight sequences with significant homology to bacterial tRNAs. The unique region of the genome contains two internal repeats: a 40-bp repeat located between bp 26778 and 28191 in the genome and a 100-bp repeat located between bp 98981 and 101170. Analysis of the gammaHV68, HVS, EBV, and KSHV genomes demonstrated that each of these viruses have large colinear gene blocks interspersed by regions containing virus-specific ORFs. Interestingly, genes associated with EBV cell tropism, latency, and transformation are all contained within these regions encoding virus-specific genes. This finding suggests that pathogenesis-associated genes of gammaherpesviruses, including gammaHV68, may be contained in similarly positioned genome regions. The availability of the gammaHV68 genomic sequence will facilitate analysis of critical issues in gammaherpesvirus biology via integration of molecular and pathogenetic studies in a small-animal model.  相似文献   

2.
3.
4.
Sequence analysis of the simian foamy virus type 1 genome.   总被引:11,自引:0,他引:11  
J J Kupiec  A Kay  M Hayat  R Ravier  J Périès  F Galibert 《Gene》1991,101(2):185-194
  相似文献   

5.
6.
A bacteriophage-related chimeric marine virus infecting abalone   总被引:1,自引:0,他引:1  
Zhuang J  Cai G  Lin Q  Wu Z  Xie L 《PloS one》2010,5(11):e13850
Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria.  相似文献   

7.
Ostreococcus tauri virus (OtV-1) is a large double-stranded DNA virus and a prospective member of the family Phycodnaviridae , genus Prasinovirus . OtV-1 infects the unicellular marine green alga O. tauri , the smallest known free-living eukaryote. Here we present the 191 761 base pair genome sequence of OtV-1, which has 232 putative protein-encoding and 4 tRNA-encoding genes. Approximately 31% of the viral gene products exhibit a similarity to proteins of known functions in public databases. These include a variety of unexpected genes, for example, a PhoH-like protein, a N -myristoyltransferase, a 3-dehydroquinate synthase, a number of glycosyltransferases and methyltransferases, a prolyl 4-hydroxylase, 6-phosphofructokinase and a total of 8 capsid proteins. A total of 11 predicted genes share homology with genes found in the Ostreococcus host genome. In addition, an intein was identified in the DNA polymerase gene of OtV-1. This is the first report of an intein in the genome of a virus that infects O. tauri. Fifteen core genes common to nuclear-cytoplasmic large dsDNA virus (NCLDV) genomes were identified in the OtV-1 genome. This new sequence data may help to redefine the classification of the core genes of these viruses and shed new light on their evolutionary history.  相似文献   

8.
The origin of the symbiotic association between parasitoid wasps and bracoviruses is still unknown. From phylogenetic analyses, bracovirus-associated wasp species constitute a monophyletic group, the microgastroid complex. Thus all wasp-bracovirus associations could have originated from the integration of an ancestral virus in the genome of the ancestor of the microgastroids. In an effort to identify a set of virus genes that would give clues on the nature of the ancestral virus, we have recently performed the complete sequencing of the genome of CcBV, the bracovirus of the wasp Cotesia congregata. We describe here the putative proteins encoded by CcBV genome having significant similarities with sequences from known viruses and mobile elements. The analysis of CcBV gene content does not lend support to the hypothesis that bracoviruses originated from a baculovirus. Moreover, no consistent homology was found between CcBV genes and any set of genes constituting the core genome of a known free-living virus. We discuss the significance of the scarce homology found between proteins from CcBV and other viruses or mobile elements.  相似文献   

9.
To localize gene that may encode immunogens potentially important for recombinant vaccine design, we have analysed a region of the equine herpesvirus type-1 (EHV-1) genome where a glycoprotein-encoding gene had previously been mapped. The 4707-bp BamHI-EcoRI fragment from the short unique region of the EHV-1 genome was sequenced. This sequence contains three entire open reading frames (ORFs), and portions of two more. ORF1 codes for 161 amino acids (aa), and represents the C terminus of a possible membrane-bound protein. ORF2 (424 aa) and ORF3 (550 aa) are potential glycoprotein-encoding genes; the predicted aa sequences contain possible signal sequences, N-linked glycosylation sites and transmembrane domains; they also show homology to the glycoproteins gI and gE of herpes simplex virus type-1 (HSV-1), and the related proteins of pseudorabies virus and varicella-zoster virus. The predicted aa sequence of ORF4 shares no homology with other known herpesvirus proteins, but the nucleotide sequence shows a high level of homology with the corresponding region of the EHV-4 genome. ORF5 may be related to US9 of HSV-1.  相似文献   

10.
Human gene catalogs are fundamental to the study of human biology and medicine. But they are all based on open reading frames (ORFs) in a reference genome sequence (with allowance for introns). Individual genomes, however, are polymorphic: their sequences are not identical. There has been much research on how polymorphism affects previously-identified genes, but no research has been done on how it affects gene identification itself. We computationally predict protein-coding genes in a straightforward manner, by finding long ORFs in mRNA sequences aligned to the reference genome. We systematically test the effect of known polymorphisms with this procedure. Polymorphisms can not only disrupt ORFs, they can also create long ORFs that do not exist in the reference sequence. We found 5,737 putative protein-coding genes that do not exist in the reference, whose protein-coding status is supported by homology to known proteins. On average 10% of these genes are located in the genomic regions devoid of annotated genes in 12 other catalogs. Our statistical analysis showed that these ORFs are unlikely to occur by chance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号