首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acrosomal reaction (AR) is a regulated sperm exocytotic process that involves fusion of the plasma membrane (PM) with the outer acrosomal membrane (OAM). Our group has described F-actin cytoskeletons associated to these membranes. It has been proposed that in regulated exocytosis, a cortical cytoskeleton acts as a barrier that obstructs membrane fusion, and must be disassembled for exocytosis to occur. Actin-severing proteins from the gelsolin family have been considered to break this barrier. The present study attempted to determine if gelsolin has a function in guinea pig sperm capacitation and AR. By indirect immunofluorescence (IIF), gelsolin was detected in the apical and postacrosomal regions of the head and in the flagellum in both capacitated and non-capacitated guinea pig spermatozoa. By Western blotting, gelsolin was detected in isolated PM and OAM of non-capacitated spermatozoa. Gelsolin and actin were detected in a mixture of PM-OAM obtained by sonication, and both proteins were absent in membranes of capacitated spermatozoa. Inhibition of three different pathways of PIP2 hydrolysis during capacitation did not cancel gelsolin loss from membranes. Gelsolin was detected by Western blotting associated to membrane cytoskeletons obtained after phalloidin F-actin stabilization and Triton-X treatment; additionally, by immunoprecipitation, it was shown that gelsolin is associated with actin. By electron microscopy we observed that skeletons disassemble during capacitation, but phalloidin prevents disassembly. A three-dimensional skeleton was observed that apparently joins PM with OAM. Exogenous gelsolin stimulates AR assayed in a permeabilized spermatozoa model. Results suggest that gelsolin disassembles F-actin cytoskeletons during capacitation, promoting AR.  相似文献   

2.
The presence of actin has been determined in mammalian spermatozoa. However, its function in these cells is still almost unknown. Only in boar spermatozoa has evidence for F-actin and a possible function for it been presented. In this work, actin distribution and F-actin were determined in uncapacitated, capacitated, and acrosomal-reacted guinea pig spermatozoa, by means of monoclonal and polyclonal antibodies, using an indirect immunoperoxidase technique, and by the use of rhodamine-phalloidin. With the last probe we found filamentous actin in these cells. By both techniques, actin was detected in the acrosome and in the entire tail. In some cells with acrosomal reaction, actin was also detected in the equatorial and in the postacrosomal regions. SDS-PAGE and Western blots immunostained with monoclonal and polyclonal anti-actin antibodies confirmed the presence of actin in extracts of guinea pig spermatozoa. Actin was also detected in preparations of Percoll-purified spermatozoa. We have communicated that guinea pig spermatozoa show a change on calmodulin location during the acrosome reaction. They present it first in the equatorial region and later in the postacrosomal region. To determine if F-actin participates in this calmodulin translocation, we studied the effect of cytochalasin D. It was found that the number of cells with calmodulin in the equatorial region increased in the presence of cytochalasin D while the number of cells with calmodulin in the postacrosomal region decreased. We also found that after cytochalasin D treatment acrosome loss was increased and sperm motility was slightly inhibited. Our results suggest that actin participate in calmodulin translocation to the postacrosomal region during acrosome reaction, in maintaining the acrosome structure, and perhaps also in sperm motility.  相似文献   

3.
The effects of Ca2+ channel antagonists on the motility and acrosome reaction of guinea pig spermatozoa were examined by incubating the spermatozoa continuously in Ca2+-containing capacitating media with 10?6 M to 10?4 M antagonist. Antagonists tested were four voltage-gated Ca2+ channel antagonists (verapamil, nifedipine, nimodipine, and FR–34235) and two ligand-gated channel antagonists (NaNO2 and Na-nitroprusside). None of these antagonists could block the acrosome reaction. Instead, three antagonists (verapamil, nimodipine, and FR-34235, each at 10?4 M) accelerated the onset of the acrosome reaction with a subsequent decrease in sperm motility. Nifedipine and Na-nitroprusside at the same concentration caused a complete loss of sperm motility by 4 hr of incubation with no substantial effect on the rate of acrosome reaction. The detrimental effect of antagonists on the motility of spermatozoa appears to be due to a direct, Ca2+-independent, membrane-perturbing action of the reagents. The acrosome reaction was not inhibited when guinea pig spermatozoa were precapacitated in Ca2+-free medium (with a low concentration of lysolecithin) in the continuous presence of antagonists. An acceleration of the onset of the acrosome reaction by verapamil (10?4 M) was also demonstrated in the golden hamster. These results may be interpreted as indicating that the entry of extracellular Ca2+ into spermatozoa, which triggers the acrosome reaction of guinea pig and hamster spermatozoa, is not mediated by Ca2+ channels. This is in marked contrast with the case reported in invertebrate spermatozoa. Possible mechanisms by which some of the antagonists stimulate the acrosome reaction and affect the motility of mammalian spermatozoa are discussed.  相似文献   

4.
The acrosome reaction (AR) is a regulated exocytotic process. In several cell types, an actin network situated under the plasma membrane (PM) acts as a physical barrier to prevent this exocytosis. In seeking a function for a cortical skeleton in guinea pig spermatozoa, the PM and the outer acrosomal membrane (OAM) were investigated for the presence of F-actin and spectrin, proteins generally found in cell cortical skeletons. Both membrane types were visualized in whole-mount preparations by electron microscopy. PM proteins gave positive reaction to the Na(+),K(+)-ATPase antibody and the OAM proteins did not react to the antibody. Furthermore, a Triton X-100-resistant skeleton was obtained from both membrane types. Using gold immunoelectron microscopy, F-actin was visualized in the PM and in the OAM skeletons, while spectrin was only detected in the PM skeleton. The presence of an F-actin cortical skeleton in the sperm PM suggests that F-actin may be involved in the AR. The significantly higher number of AR elicited by cytochalasin D (Cyt-D) treatment(P<0.005) and data showing a significant (P>0.03) decrease in F-actin relative concentration in capacitating spermatozoa, agree with this suggestion. Furthermore, the proposal is strengthened by the fact that stabilization of F-actin by phalloidin (Ph) significantly (P>0.01) diminished AR induced by Ca(2+) in a streptolysin O (SLO)-permeabilized sperm model.  相似文献   

5.
Hyperactivated motility was studied in guinea pig spermatozoa. In the presence of the local anesthetic procaine, a high number of sperm cells (64%) showed hyperactivation when incubated in minimal culture medium with pyruvate, lactate, and glucose. Hyperactivated motility was dependent on glucose in the medium. Sperm ATP concentration was increased twofold in hyperactivated sperm when compared to procaine-treated nonhyperactivated cells. cAMP levels were also higher in hyperactivated cells than in control spermatozoa. Thus, in living spermatozoa high levels of ATP appear to be needed to generate hyperactivation. cAMP is present at a high concentration in hyperactivated spermatozoa, therefore a role of cAMP in hyperactivation cannot be excluded. Depletion of external Ca2+ did not inhibit procaine-induced hyperactivated motility. Hence, procaine canceled the requirement of external Ca2+ for sperm to express hyperactivated motility. © 1994 Wiley-Liss, Inc.  相似文献   

6.
The perinuclear theca (PT) is a unique cytoskeletal mammalian sperm structure that surrounds the nucleus. Using negatively stained whole-mount preparations, we detected a PT substructure on the apical region of the postacrosomal theca layer of guinea pig spermatozoa. The PT substructure consists of projections resembling eyelashes, circling the sperm head. The PT substructure was absent in caput but appeared in corpus epidydimal spermatozoa. The same finding was observed in sheep and rabbit spermatozoa. The PT substructure persisted in capacitating spermatozoa, but was absent in acrosome reacted gametes. No labeling of the PT substructure was observed by the immunogold technique using antibodies against calmodulin, spectrin, myosin, and vimentin. A 34-kDa band appeared as a possible PT substructure protein. The PT was positive to the antibodies and the presence of the above-mentioned proteins was confirmed by Western blot. F-actin gold label was observed in mature spermatozoa on the PT substructure base zone. Results using cytochalasin D and phalloidin point to a role of F-actin in the PT substructure formation/disassembly processes. Ca(2+), bicarbonate, and proteases might be involved in the mechanism of the substructure disassembly. Novel PT morphological changes occurring during sperm epidydimal maturation and at acrosome reaction, respectively, are discussed in relation to the PT stability and function.  相似文献   

7.
Identification of a protein in the fibrous sheath of the sperm flagellum   总被引:2,自引:0,他引:2  
The fibrous sheath is a unique cytoskeletal component in the principal-piece segment of the mammalian sperm flagellum. Monoclonal antibody ATC was shown by indirect immunofluorescence (IIF) to bind to the principal piece of the flagellum of permeabilized mouse, rat, and hamster sperm, but not to that region of guinea pig, rabbit, or human sperm. IIF on isolated fibrous sheaths confirmed that the antigen was present in the fibrous sheath of mouse, rat, and hamster sperm. On Western blots of mouse spermatozoa, ATC identified a relatively insoluble major antigen with an apparent molecular weight of 67,000 (Mr 67,000). Hamster sperm fibrous sheaths contain an antigen of Mr 66,000, while rat sperm fibrous sheaths contain an antigen of Mr 65,500. The antigen was first detected in late spermatids, as determined by immunohistochemical procedures on sections of mouse, rat, and hamster testis. The antigen was not detected on Western blots of mouse brain, kidney, liver, or thymus. These results indicate that ATC recognizes a protein integral to the fibrous sheath of the principal piece of sperm detected by immunohistochemistry late in spermiogenesis that is probably restricted to the male germ cell line.  相似文献   

8.
Sperm fertilization reactions of Limulus polyphemus were examined by scanning electron and/or light microscopy. The following were considered: sperm motility, attachment of sperm to egg, acrosome reaction, and penetration of the acrosomal filament. The spermatozoa after semination are non-motile and become active only in close proximity to a defined region surrounding the egg. Egg materials diffusing into this region induce sperm motility and stimulate large numbers of spermatozoa to move towards the egg surface. Each sperm initially attaches by the apical tip and undergoes the acrosome reaction which causes a more permanent secondary attachment by the adhesion of acrosomal contents to the egg surface. The acrosome reaction also initiates the penetration of the acrosomal filament through the egg envelope, an event occurring in 70-80% of the attached spermatozoa (about 10(6). Shortly after this penetration, a secondary reaction occurs which involves a spiralling of the flagellum and an incorporation into the sperm body of the flagellar fibrous components, which then become closely apposed to the sperm nucleus. These sperm fertilization reactions were performed or initiated with 0-34 M CaCl2 in whole eggs, egg sections, excised egg envelopes and/or the outer basement lamina of the egg envelope. The Limulus fertilization system is very valuable since sperm reactions can be examined biochemically, which may lead to a better understanding of the chemical mechanisms involved in sperm-egg interactions in all animal species.  相似文献   

9.
In somatic cells, caveolin-1 plays several roles in membrane dynamics, including organization of detergent-insoluble lipid rafts, trafficking of cholesterol, and anchoring of signaling molecules. Events in sperm capacitation and fertilization require similar cellular functions, suggesting a possible role for caveolin-1 in spermatozoa. Immunoblot analysis demonstrated that caveolin-1 was indeed present in developing mouse male germ cells and both mouse and guinea pig spermatozoa. In mature spermatozoa, caveolin-1 was enriched in a Triton X-100-insoluble membrane fraction, as well as in membrane subdomains separable by means of their light buoyant densities through sucrose density gradient centrifugation. These data indicated the presence of membrane rafts enriched in caveolin-1 in spermatozoa. Indirect immunofluorescence analysis revealed caveolin-1 in the regions of the acrosome and flagellum in sperm of both species. Confocal immunofluorescence analysis of developing mouse male germ cells demonstrated partial co-localization with a marker for the acrosome. Furthermore, syntaxin-2, a protein involved in acrosomal exocytosis, was present in both raft and nonraft fractions in mature sperm. Together, these data indicated that sperm membranes possess distinct raft subdomains, and that caveolin-1 localized to regions appropriate for involvement with acrosomal biogenesis and exocytosis, as well as signaling pathways regulating such processes as capacitation and flagellar motility.  相似文献   

10.
Summary Antigenic localization in guinea pig epididymal sperm and testicular imprints as well as in viable, motile guinea pig epididymal sperm was studied by means of fluorescent labelled antibody techniques. Globulins from rabbits and chickens immunized with guinea pig epididymal sperm were used in the direct procedure while sera from sheep and fowl injected with rabbit globulins were used in the indirect procedure. The main findings were: 1) spermatozoa from the distal portion of the epididymis displayed brilliant fluorescent acrosomes and less intensely stained midpieces and principal pieces when treated as dried smears in both the direct and indirect methods; 2) testicular spermatozoa were similarly stained but whereas in epididymal spermatozoa the whole acrosome stained intensely, the testicular spermatozoal acrosome displayed intense fluorescence of the inner acrosome; 3) protoplasmic droplets fluoresced strongly; 4) cross-reactivity was observed between human and guinea pig sperm but not between rat and guinea pig sperm, indicating an antigenic relationship between human and guinea pig but not between guinea pig and rat; 5) treatment of viable, motile guinea pig spermatozoa with fluorescent globulins resulted in agglutination and immobilization as well as formation of antigen-antibody aggregates adherent to the cell membrane of the head, midpiece and principal piece; the formation of such fluorescent aggregates in the medium surrounding the treated motile sperm was indicative of leaching of antigenic material from the sperm cells.This investigation was supported by funds from United States Public Health Service grant HE-05798-03, The Ford Foundation and National Science Foundation.  相似文献   

11.
Septins are polymerizing GTP binding proteins required for cortical organization during cytokinesis and other cellular processes. A mammalian septin gene Sept4 is expressed mainly in postmitotic neural cells and postmeiotic male germ cells. In mouse and human spermatozoa, SEPT4 and other septins are found in the annulus, a cortical ring which separates the middle and principal pieces. Sept4-/- male mice are sterile due to defective morphology and motility of the sperm flagellum. In Sept4 null spermatozoa, the annulus is replaced by a fragile segment lacking cortical material, beneath which kinesin-mediated intraflagellar transport stalls. The sterility is rescued by injection of sperm into oocytes, demonstrating that each Sept4 null spermatozoon carries an intact haploid genome. The annulus/septin ring is also disorganized in spermatozoa from a subset of human patients with asthenospermia syndrome. Thus, cortical organization based on circular assembly of the septin cytoskeleton is essential for the structural and mechanical integrity of mammalian spermatozoa.  相似文献   

12.
During mammalian spermatogenesis, the diploid spermatogonia mature into haploid spermatozoa through a highly controlled process of mitosis, meiosis and post-meiotic morphological remodeling (spermiogenesis). Despite important progress made in this area, the molecular mechanisms underpinning this transformation are poorly understood. Our analysis of the expression and function of the putative serine–threonine kinase Fused (Fu) provides critical insight into key steps in spermatogenesis. In this report, we demonstrate that conditional inactivation of Fu in male germ cells results in infertility due to diminished sperm count, abnormal head shaping, decapitation and motility defects of the sperm. Interestingly, mutant flagellar axonemes are intact but exhibit altered periaxonemal structures that affect motility. These data suggest that Fu plays a central role in shaping the sperm head and controlling the organization of the periaxonemal structures in the flagellum. We show that Fu localizes to multiple tubulin-containing or microtubule-organizing structures, including the manchette and the acrosome–acroplaxome complex that are involved in spermatid head shaping. In addition, Fu interacts with the outer dense fiber protein Odf1, a major component of the periaxonemal structures in the sperm flagellum, and Kif27, which is detected in the manchette. We propose that disrupted Fu function in these structures underlies the head and flagellar defects in Fu-deficient sperm. Since a majority of human male infertility syndromes stem from reduced sperm motility and structural defects, uncovering Fu?s role in spermiogenesis provides new insight into the causes of sterility and the biology of reproduction.  相似文献   

13.
It is well established that calcium ionophore A 23187 induces acrosome reaction (AcR) of uncapacitated spermatozoa in the presence of extracellular Ca2+ ions. In the present study, we have investigated how extracellular energy substrates (glucose, pyruvate, and lactate) affect the ionophore-induced AcR of guinea pig spermatozoa. It was found that 0.3 microM concentration of A 23187 had the maximum effect to initiate AcR of guinea pig spermatozoa. Virtually no spermatozoa underwent their AcR when incubated in substrate-free modified Tyrode's medium containing 0.3 microM A 23187 and 2 mM Ca2+. At least one exogenous substrate is essential for the ionophore-induced AcR of spermatozoa. As for efficacy of the substrates, lactate was more effective than pyruvate and glucose. However, a better result was observed when lactate was added along with pyruvate. Malonate inhibited the ionophore-induced AcR but not the hyperactivated motility of spermatozoa. The mitochondrial electron transport chain blockers rotenone, antimycin, and oligomycin failed to inhibit AcR, although in the presence of these blockers spermatozoa were unable to show hyperactivated motility. These results suggest that the mitochondrial citric acid cycle, not the electron transport chain, is probably the energy source for ionophore-induced AcR of guinea pig spermatozoa.  相似文献   

14.
Motility is a characteristic function of the male gamete, which allows spermatozoa to actively reach and penetrate the female gamete in organisms with internal and external fertilization. Sperm motility is acquired under the control of many extrinsic and intrinsic factors and is based on the specialized structure of the sperm flagellum. After a brief overview of how the sperm flagellum is organized and works to support cell motility, the present review focuses on the molecular mechanisms and factors involved in the development and maintenance of sperm motility. Data obtained both in organisms with external fertilization, such as fishes and sea urchin, and with internal fertilization, such as Mammals, are critically analyzed. In particular, a great attention has been put on the ionic mechanisms and on the involvement of protein kinases and phosphatases in regulation of sperm motility. A brief overview of the pharmacological and physiological molecules which have been studied for their possible application as therapeutic molecules for in vitro treatment of defects of sperm motility in asthenozoospermic human subjects, is presented. Moreover, we show some preliminary data obtained in our laboratory on the involvement of the phosphatydilinositol 3-kinase and the A kinase anchoring protein (AKAP3) in regulation of motility in human spermatozoa. The last section is dedicated to hyperactivation, a peculiar pattern of motility which is developed in association with capacitation occurring during sperm transit through the female genital tract and which can also be obtained in vitro by incubation in defined media.  相似文献   

15.
Microfilaments appear in boar spermatozoa during capacitation in vitro   总被引:1,自引:0,他引:1  
Boar spermatozoa were incubated in a capacitation medium and examined for the presence of filamentous actin by using the fluorescent probe NBD-phallacidin. F-actin was not observed in uncapacitated sperm, but developed in most regions of the cell during the capacitation period. Fluorescent staining was most intense in the flagellum. When fresh seminal plasma was added to capacitated sperm and the sperm was further incubated, F-actin was no longer observed. In view of previous experiments which indicated that plasma membrane proteins (PMPs), including a major integral PMP, move out of the sperm head into the flagellum during capacitation and that this movement is inhibited by the microfilament poison cytochalasin D (Peterson, Saxena, Saxena, and Russell: Biol. Reprod., in press, '86), we suggest that actin-PMP interactions play a major role in capacitating boar spermatozoa.  相似文献   

16.
The objective of the study was to compare carp sperm motility performances (sperm velocity and motility rates) from 10 males including fertilizing ability (hatching rates from 10 males and eight females) as a function of time elapsed after sperm exposure to activation medium in two situations: firstly activated sperm and sperm which had terminated swimming and was ‘re‐activated’ after incubation in a K+ rich (200 mm KCl) non‐swimming solution. In case of both initial (first) and secondly activated spermatozoa, the motility was triggered in hatchery solution (HAS, 11.2 mOsmol) and in carp activation solution (CAS, 128.9 mOsmol) containing 45 mm NaCl, 5 mm KCl, 30 mm Tris–HCl while also adjusted to a pH of 8.0. First time activated sperm showed significantly higher relative motility, sperm velocity and fertilizing ability compared to re‐activated sperm. The carp spermatozoa (in either first or second activation) rapidly lost their fertilizing ability as a function of exposure time of sperm to diluents prior to addition to eggs: this shows that spermatozoa must be in contact with eggs as soon as their motility is triggered. When sperm was firstly activated in CAS and also activated a second time in CAS (labeled CASCAS) the hatching rate was significantly higher at egg contact after 10, 20, 30, and 120 s of activation. Also at 20 s after the second activation of the sperm higher sperm motility was observed compared to the first activation. This study showed that incubation of spermatozoa in a K+‐rich incubation medium can mitigate the affects of structural damages occurring in re‐activated sperm, which may help spermatozoa to increase their motility and fertilization. To our knowledge, the results presented in this study document for the first time that fertilization can be achieved with sperm re‐activated a second time while being exposed to a incubation medium that permits ATP reloading within the flagellum. Previous studies have show the potential for recovery of motility, however, the effect on possible fertilization is hitherto unknown. It critical outcome of the study clearly indicated the need for avoiding the use of different, subsequent activation media (e.g. first and second activation) but only on the same medium for both steps (see above CASCAS).  相似文献   

17.
18.
In Vimba vimba, GSI, sperm volume, and spermatozoa concentration range from 3.4-7.4 %, 0.1-1.1 ml, and 13.3-34.8 × 109 spz ml−1, respectively. Gonad mass (r = 0.90) and sperm volume (r = 0.35) significantly correlated with weight of males. Significant correlation was also found between gonad mass and length of males (r = 0.85). Sperm motility (r = 0.99) and velocity (r = 098) significantly decreased after activation in Tris-HCl 20 mM, pH 8.5. Osmolality of the seminal plasma was 273.2 mOsmol kg−1. Sperm motility and velocity were significantly affected by the osmolality of the activation medium (P < 0.01). Hyper-osmolality compared to seminal plasma osmolality totally suppressed the sperm activation. At 15 s post-activation, the sperm motility significantly decreased at 240 mOsmol kg−1 in KCl or NaCl media. The highest sperm motility and velocity (at 60 s post-activation) were observed at 200 mOsmol kg−1 in NaCl, KCl, or sucrose media. In all treatments, the tip of the flagellum of spermatozoa became curled into a loop shape after activation of sperm in distilled water containing 20 mM Tris-HCl, pH 8.5 that shortened the flagellum.  相似文献   

19.
1. The effect of glutathione (5mM) addition to the diluent used for sperm preservation on fructolysis and motility of bull spermatozoa was studied. 2. Glutathione had no effect on lactate and pyruvate concentration and on the motility of spermatozoa immediately after their thawing. 3. During 3 hr incubation at 37 degrees C glutathione decreased the pyruvate formation, significantly increased the lactate production and prevented the decrease in the number of spermatozoa with maintained progressive movement.  相似文献   

20.
There is evidence that ergot alkaloids can directly interact with mammalian spermatozoa affecting sperm functions. Ergot alkaloids exert their toxic or pharmaceutical effects through membrane receptor-mediated activities. This study investigated the signaling pathways involved in the in vitro inhibitory effects of both ergotamine (ET) and dihydroergotamine (DEHT) on the relative motility of bovine spermatozoa using specific inhibitors. Motile bovine spermatozoa were prepared using a Percoll gradient and incubated with ergot alkaloids with and without signaling pathway inhibitors. Co-incubation of ET or DHET with 100 μM prazosin (alpha 1-adrenergic receptor inhibitor) decreased (p < 0.05) relative motility of spermatozoa when compared with controls. In addition, preincubation of spermatozoa with 10 or 20 μM prazosin and DHET also reduced (p < 0.05) the number of motile spermatozoa. Relative sperm motility (motility of treated spermatozoa normalized to control sperm motility) was increased (p < 0.05) when co-incubations included ET and yohimbine (alpha 2-adrenergic receptor inhibitor); conversely, co-incubation of yohimbine (100 μM) and DHET decreased (p < 0.05) the percentage of motile spermatozoa when compared with controls. Pertussis toxin and cholera toxin (effectors of inhibitory and stimulatory G-proteins, respectively) altered (p < 0.05) relative sperm motility in a concentration dependent manner; however, co-incubation of pertussis or cholera toxin with ergot alkaloids had no interactive (p = 0.83) effects on the relative motility of spermatozoa. Co-incubation of Rp-cAMP (a membrane-permeable cAMP inhibitor) with 50 μM DHET had no effect (p > 0.05) on relative sperm motility; whereas, the co-incubation of 22.4 or 44.8 μM Rp-cAMP with 50 μM ET increased (p < 0.05) the percentage of motile spermatozoa when compared with 0 or 224 μM Rp-cAMP (49%, 65%, 59%, and 54%, respectively, for 0, 22.4, 44.8, and 224 μM of Rp-cAMP. An interaction between BAPTA-AM (a chelator of intracellular calcium) and alkaloids also impacted (p < 0.05) relative sperm motility. Generally, co-incubating spermatozoa with BAPTA-AM and ET increased the percentage of motile spermatozoa; however, co-incubation with DHET decreased relative sperm motility except with 41 μM BAPTA-AM. Collectively, these observations suggest that ET and DHET decreased the percentage of motile bovine spermatozoa via alpha adrenergic receptors. However, the second messenger systems involved with ergot alkaloid inhibition of relative motility of bovine spermatozoa remain to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号