首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Hypoxia induces apoptosis in primary and transformed cells and in various tumor cell lines in vitro. In contrast, there is little apoptosis and predominant necrosis despite extensive hypoxia in human glioblastomas in vivo. We here characterize ultrastructural and biochemical features of cell death in LN-229, LN-18 and U87MG malignant glioma cells in a paradigm of hypoxia with partial glucose deprivation in vitro. Electron microscopic analysis of hypoxia-challenged glioma cells demonstrated early stages of apoptosis but predominant necrosis. ATP levels declined during hypoxia, but recovered with re-exposure to normoxic conditions unless hypoxia exceeded 8 h. Longer hypoxic exposure resulted in irreversible ATP depletion and delayed cell death. Hypoxia induced mitochondrial release of cytochrome c, but there was no cleavage of caspases 3, 7, 8 or 9, and no DNA fragmentation. Ectopic expression of BCL-XL conferred protection from hypoxia-induced cell death, whereas the overexpression of the antiapoptotic proteins X-linked-inhibitor-of-apoptosis-protein and cytokine response modifier-A had no effect. These findings suggest that glioma cells resist adverse effects of hypoxia until energy stores are depleted and then undergo necrosis rather than apoptosis because of energy deprivation.  相似文献   

4.
RNA-based arbitrarily primed PCR (RAP-PCR) was used to identify sequences in CHO K1 cells that were differentially expressed upon methotrexate incubation during the development of resistance to this drug. Ten different RAP products were isolated, cloned and sequenced. Among these, we identified one sequence that showed 84% identity with the nucleotide sequence of rat cytochrome c oxidase subunit II, and 90% identity with the amino acid sequence of this protein. This RAP fragment was up-regulated in a dose- and time-dependent manner. The overexpression of cytochrome c oxidase subunit II mRNA as a result of methotrexate incubation was corroborated by quantitative RT-PCR and Northern blot analysis. Incubation of cells with sodium azide, a specific cytochrome c oxidase inhibitor, decreased the number of resistant colonies after methotrexate treatment. Thus, overexpression of cytochrome c oxidase is involved in the development of resistance to methotrexate. These results suggest that sodium azide may be used as a modulator in chemotherapy with methotrexate.  相似文献   

5.
6.
Bender E  Kadenbach B 《FEBS letters》2000,466(1):130-134
In previous studies the allosteric inhibition of cytochrome c oxidase at high intramitochondrial ATP/ADP-ratios via binding of the nucleotides to the matrix domain of subunit IV was demonstrated. Here we show that the allosteric ATP-inhibition of the isolated bovine heart enzyme is switched on by cAMP-dependent phosphorylation with protein kinase A of subunits II (and/or III) and Vb, and switched off by subsequent incubation with protein phosphatase 1. It is suggested that after cAMP-dependent phosphorylation of cytochrome c oxidase mitochondrial respiration is controlled by the ATP/ADP-ratio keeping the proton motive force Deltap low, and the efficiency of energy transduction high. After Ca(2+)-induced dephosphorylation this control is lost, accompanied by increase of Deltap, slip of proton pumping (decreased H(+)/e(-) stoichiometry), and increase of the rate of respiration and ATP-synthesis at a decreased efficiency of energy transduction.  相似文献   

7.
The influence of protein phosphorylation on the kinetics of cytochrome c oxidase was investigated by applying Western blotting, mass spectrometry, and kinetic measurements with an oxygen electrode. The isolated enzyme from bovine heart exhibited serine, threonine, and/or tyrosine phosphorylation in various subunits, except subunit I, by using phosphoamino acid-specific antibodies. The kinetics revealed slight inhibition of oxygen uptake in the presence of ATP, as compared with the presence of ADP. Mass spectrometry identified the phosphorylation of Ser-34 at subunit IV and Ser-4 and Thr-35 at subunit Va. Incubation of the isolated enzyme with protein kinase A, cAMP, and ATP resulted in serine and threonine phosphorylation of subunit I, which was correlated with sigmoidal inhibition kinetics in the presence of ATP. This allosteric ATP-inhibition of cytochrome c oxidase was also found in rat heart mitochondria, which had been rapidly prepared in the presence of protein phosphatase inhibitors. The isolated rat heart enzyme, prepared from the mitochondria by blue native gel electrophoresis, showed serine, threonine, and tyrosine phosphorylation of subunit I. It is concluded that the allosteric ATP-inhibition of cytochrome c oxidase, previously suggested to keep the mitochondrial membrane potential and thus the reactive oxygen species production in cells at low levels, occurs in living cells and is based on phosphorylation of cytochrome c oxidase subunit I.  相似文献   

8.
The changes in cerebral metabolism in mice in severe hypoxia were investigated by analyses of changes in the levels of energy metabolites and near-infrared spectrophotometric assessment of the states of hemoglobin and cytochrome oxidase. Under 4.4% O2, the contribution of anaerobic ATP production was at most about 20% of the demand. However, the cerebral ATP level was kept at the control level until about 1 min before death. Pentobarbital anesthesia, which reduced the cerebral rate of metabolism, prolonged the survival time, although anaerobic ATP production still did not support ATP demand. Under these conditions, deoxygenation of hemoglobin and reduction of cytochrome oxidase proceeded rapidly within 1 min. Hemoglobin reached the maximum state of deoxygenation in the middle phase of hypoxia, with no further change until death. However, cytochrome oxidase was reduced slowly with one phase of partial reoxidation due to increase of cerebral blood volume, and reached the completely reduced state at death. From these results it was concluded that the aerobic ATP synthesis, which supplied more than 80% of the cerebral demand, decreased gradually because of limitation of oxygen supply, and that the failure of oxidative phosphorylation to meet demand triggered the decrease in the cellular ATP level that led to death.  相似文献   

9.
10.
In mammals, subunit c of the F1F0-ATP synthase has three isoforms (P1, P2, and P3). These isoforms differ by their cleavable mitochondrial targeting peptides, whereas the mature peptides are identical. To investigate this apparent genetic redundancy, we knocked down each of the three subunit c isoform by RNA interference in HeLa cells. Silencing any of the subunit c isoforms individually resulted in an ATP synthesis defect, indicating that these isoforms are not functionally redundant. We found that subunit c knockdown impaired the structure and function of the mitochondrial respiratory chain. In particular, P2 silencing caused defective cytochrome oxidase assembly and function. Because the expression of exogenous P1 or P2 was able to rescue the respective silencing phenotypes, but the two isoforms were unable to cross-complement, we hypothesized that their functional specificity resided in their targeting peptides. In fact, the expression of P1 and P2 targeting peptides fused to GFP variants rescued the ATP synthesis and respiratory chain defects in the silenced cells. Our results demonstrate that the subunit c isoforms are nonredundant, because they differ functionally by their targeting peptides, which, in addition to mediating mitochondrial protein import, play a yet undiscovered role in respiratory chain maintenance.  相似文献   

11.
Recent findings have reported that up‐regulation of tumor necrosis factor‐alpha (TNF‐α) induced by myocardial hypoxia aggravates cardiomyocyte injury. Acetylcholine (ACh), the principle vagal neurotransmitter, protects cardiomyocytes against hypoxia by inhibiting apoptosis. However, it is still unclear whether ACh regulates TNF‐α production in cardiomyocytes after hypoxia. The concentration of extracellular TNF‐α was increased in a time‐dependent manner during hypoxia. Furthermore, ACh treatment also inhibited hypoxia‐induced TNF‐α mRNA and protein expression, caspase‐3 activation, cell death and the production of reactive oxygen species (ROS) in cardiomyocytes. ACh treatment prevented the hypoxia‐induced increase in p38 mitogen‐activated protein kinase (MAPK) and c‐Jun N‐terminal kinase (JNK) phosphorylation, and increased extracellular signal‐regulated kinase (ERK) phosphorylation. Co‐treatment with atropine, a non‐selective muscarinic acetylcholine receptor antagonist, or methoctramine, a selective type‐2 muscarinic acetylcholine (M2) receptor antagonist, abrogated the effects of ACh treatment in hypoxic cardiomyocytes. Co‐treatment with hexamethonium, a non‐selective nicotinic receptor antagonist, and methyllycaconitine, a selective alpha7‐nicotinic acetylcholine receptor antagonist, had no effect on ACh‐treated hypoxic cardiomyocytes. In conclusion, these results demonstrate that ACh activates the M2 receptor, leading to regulation of MAPKs phosphorylation and, subsequently, down‐regulation of TNF‐α production. We have identified a novel pathway by which ACh mediates cardioprotection against hypoxic injury in cardiomyocytes. J. Cell. Physiol. 226: 1052–1059, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.

Background

Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α.

Methodology/Principal Findings

In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule–depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells.

Conclusions/Significance

This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.  相似文献   

13.
The rat homologue of a mitochondrial ATP-dependent protease Lon was cloned from cultured astrocytes exposed to hypoxia. Expression of Lon was enhanced in vitro by hypoxia or ER stress, and in vivo by brain ischemia. These observations suggested that changes in nuclear gene expression (Lon) triggered by ER stress had the potential to impact important mitochondrial processes such as assembly and/or degradation of cytochrome c oxidase (COX). In fact, steady-state levels of nuclear-encoded COX IV and V were reduced, and mitochondrial-encoded subunit II was rapidly degraded under ER stress. Treatment of cells with cycloheximide caused a similar imbalance in the accumulation of COX subunits, and enhanced mRNA for Lon and Yme1, the latter another mitochondrial ATP-dependent protease. Furthermore, induction of Lon or GRP75/mtHSP70 by ER stress was inhibited in PERK (-/-) cells. Transfection studies revealed that overexpression of wild-type or proteolytically inactive Lon promoted assembly of COX II into a COX I-containing complex, and partially prevented mitochondrial dysfunction caused by brefeldin A or hypoxia. These observations demonstrated that suppression of protein synthesis due to ER stress has a complex effect on the synthesis of mitochondrial-associated proteins, both COX subunits and ATP-dependent proteases and/or chaperones contributing to assembly of the COX complex.  相似文献   

14.
Activation of angiotensin II (Ang II) type 1 receptor (AT1R) signaling is reported to play an important role in cardiac hypertrophy. We previously cloned a novel molecule interacting with the AT1R, which we named ATRAP (for Ang II type 1 receptor-associated protein). Here, we report that overexpression of ATRAP significantly decreases the number of AT1R on the surface of cardiomyocytes, and also decreases the degree of p38 mitogen-activated protein kinase phosphorylation, the activity of the c-fos promoter and protein synthesis upon Ang II treatment. These results indicate that ATRAP significantly promotes downregulation of the AT1R and further attenuates certain Ang II-mediated hypertrophic responses in cardiomyocytes.  相似文献   

15.
Mitochondrial oxidative phosphorylation provides most cellular energy. As part of this process, cytochrome c oxidase (CcO) pumps protons across the inner mitochondrial membrane, contributing to the generation of the mitochondrial membrane potential, which is used by ATP synthase to produce ATP. During acute inflammation, as in sepsis, aerobic metabolism appears to malfunction and switches to glycolytic energy production. The pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha) has been shown to play a central role in inflammation. We hypothesized that TNFalpha-triggered cell signaling targets CcO, which is a central enzyme of the aerobic energy metabolism and can be regulated through phosphorylation. Using total bovine and murine hepatocyte homogenates TNFalpha treatment led to an approximately 60% reduction in CcO activity. In contrast, there was no direct effect of TNFalpha on CcO activity using isolated mitochondria and purified CcO, indicating that a TNFalpha-triggered intracellular signaling cascade mediates CcO inhibition. CcO isolated after TNFalpha treatment showed tyrosine phosphorylation on CcO catalytic subunit I and was approximately 50 and 70% inhibited at high cytochrome c concentrations in the presence of allosteric activator ADP and inhibitor ATP, respectively. CcO phosphorylation occurs on tyrosine 304 as demonstrated with a phosphoepitope-specific antibody. Furthermore, the mitochondrial membrane potential was decreased in H2.35 cells in response to TNFalpha. Concomitantly, cellular ATP was more than 35 and 64% reduced in murine hepatocytes and H2.35 cells. We postulate that an important contributor in TNFalpha-mediated pathologies, such as sepsis, is energy paucity, which parallels the poor tissue oxygen extraction and utilization found in such patients.  相似文献   

16.
Bipolar disorder (BD) is a psychiatric disease considered to polygenic with multiple factors in genetics, each of which is not dominant but collaborative during pathogenic progression. We describe a method that estimates the collaborative contribution to the disease between a certain well-studied pathway and the other candidate pathway using Gene Set Enrichment Analysis (GSEA). We describe a modified GSEA (improved derivation) to identify genes that are significantly and differentially expressed between disease and non-disease states and that are consistently co-expressed with a target pathway which is deeply related to disease etiology. The modified GSEA uses available gene expression data to identify molecular mechanism (ubiquitin-proteasome and inflammatory response) associated with the disease. We believe that this approach could reveal hidden relations between a certain well-studied pathway and the other candidate pathway known in literature.

Abbreviations

ATP5I - ATP synthase H+ transporting mitochondrial F0 complex subunit E, ATP5J - ATP synthase H+ transporting mitochondrial F0 complex subunit F6, BAD - Bcl-2-associated death promoter, BAX - Bcl-2-associated x protein, Bcl-2 - B-cell lymphoma 2, BDNF - brain derived neurotrophic factor, COX5B - Cytochrome c oxidase subunit Vb, COX7A2 - cytochrome c oxidase subunit VIIa polypeptide 2, DLK - dual leucine zipper-bearing kinase, GABA - Gamma aminobutyric acid, IL-8 - Interleukin 8, NDUFA1 - NADH dehydrogenase 1 alpha subcomplex 1, NDUFB2 - NADH dehydrogenase1 beta subcomplex 2, NDUFS4 - NADH dehydrogenase Fe-S protein 4, NGF - nerve growth factor, PPP2R5C - protein phosphatase 2 regulatory subunit B gamma, PSMA3 - proteasome subunit alpha type 3, PSMA7 - proteasome subunit alpha type 7, PSMB1 - proteasome subunit beta type 1, PSMB6 - proteasome subunit beta type 6, PSMB7 - proteasome subunit beta type 7, PSMC2 - proteasome 26S subunit ATPase 2, PSMC5 - proteasome 26S subunit ATPase 5, SLC6A4 - solute carrier family 6 member 4, TNFa - tumor necrosis factor a, UBE2A - ubiquitinconjugating enzyme E2A, UCRC - ubiquinol-cytochrome c reductase complex, UFC1 - ubiquitin-fold modifier conjugating enzyme 1, UQCRQ - ubiquinol-cytochrome c reductase complex III subunit VII, USP14 - ubiquitin specific protease 14.  相似文献   

17.
Inhibition of cytochrome c oxidase function by dicyclohexylcarbodiimide   总被引:12,自引:0,他引:12  
Dicyclohexylcarbodiimide (DCCD) reacted with beef heart cytochrome c oxidase in inhibit the proton-pumping function of this enzyme and to a lesser extent to inhibit electron transfer. The modification of cytochrome c oxidase in detergent dispersion or in vesicular membranes was in subunits II-IV. Labelling followed by fragmentation studies showed that there is one major site of modification in subunit III. DCCD was also incorporated into several sites in subunit II and at least one site of subunit IV. The major site in subunit III has a specificity for DCCD at least one order of magnitude greater than that of other sites (in subunits II and IV). Its modification could account for all of the observed effects of the reagent, at least for low concentrations of DCCD. Labelling of subunit II by DCCD was blocked by prior covalent attachment of arylazidocytochrome c, a cytochrome c derivative which binds to the high-affinity binding site for the substrate. The major site of DCCD binding in subunit III was sequenced. The label was found in glutamic acid 90 which is in a sequence of eight amino acids remarkably similar to the DCCD-binding site within the proteolipid protein of the mitochondrial ATP synthetase.  相似文献   

18.
Necroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis factor alpha (TNF-α)-induced necroptosis requires the adaptor proteins FADD and NEMO. FADD was found to mediate formation of the TNF-α-induced pronecrotic RIP1-RIP3 kinase complex, whereas the IκB Kinase (IKK) subunit NEMO appears to function downstream of RIP1-RIP3. Interestingly, loss of RelA potentiated TNF-α-dependent necroptosis, indicating that NEMO regulates necroptosis independently of NF-κB. Using both pharmacologic and genetic approaches, we demonstrate that the overexpression of antioxidants alleviates ROS elevation and necroptosis. Finally, elimination of BAX and BAK or overexpression of Bcl-x(L) protects cells from necroptosis at a later step. These findings provide evidence that mitochondria play an amplifying role in inflammation-induced necroptosis.  相似文献   

19.
Mouse embryo fibroblasts were grown in low and control O2 for 24 h (average medium oxygen tensions, 7 torr and 143 torr, respectively). Relative to controls, there was a reduction in radiolabeled subunits in immunoprecipitates of cytochrome oxidase and cytochrome b.c1 prepared from low O2 cells. Incorporation of radiolabeled amino acids into subunit I of cytochrome oxidase and the apocytochrome b protein of the b.c1 complex ranged from 51-100% of control, whereas the appearance of these pulse-labeled subunits into holoenzymes immunoprecipitated from low O2 cells was in the range of 6-39% of control. The synthesis of subunit II of cytochrome oxidase by low O2 cells ranged from 63-100% of control, and assembly of this protein into the low O2 immunoprecipitated enzyme ranged from 15-61% of control. Thus, the data suggest that O2 had an effect on the assembly of these mitochondrially translated proteins that was independent of any effect on their synthesis.  相似文献   

20.
Fang YD  Xu X  Dang YM  Zhang YM  Zhang JP  Hu JY  Zhang Q  Dai X  Teng M  Zhang DX  Huang YS 《PloS one》2011,6(12):e28052
Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny remains elusive. Previously we verified that hypoxia-induced phosphorylation of microtubule-associated protein 4 (MAP4) could lead to microtubules (MTs) disruption. In this study, we established the hypoxic (1% O(2)) cell models of rat cardiomyocytes, H9c2 and HeLa cells to further test MAP4 function. We demonstrated that increase in the pool of MAP4 could promote the stabilization of MT networks by increasing the synthesis and polymerization of tubulin in hypoxia. Results showed MAP4 overexpression could enhance cell viability and ATP content under hypoxic conditions. Subsequently we employed a yeast two-hybrid system to tag a protein interacting with mitochondria, dynein light chain Tctex-type 1 (DYNLT1), by hVDAC1 bait. We confirmed that DYNLT1 had protein-protein interactions with voltage-dependent anion channel 1 (VDAC1) using co-immunoprecipitation; and immunofluorescence technique showed that DYNLT1 was closely associated with MTs and VDAC1. Furthermore, DYNLT1 interactions with MAP4 were explored using a knockdown technique. We thus propose two possible mechanisms triggered by MAP4: (1) stabilization of MT networks, (2) DYNLT1 modulation, which is connected with VDAC1, and inhibition of hypoxia-induced mitochondrial permeabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号